126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Ubiquitin Code

      1 , 2

      Annual Review of Biochemistry

      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.

          Related collections

          Most cited references 144

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and quantitative assessment of the ubiquitin-modified proteome.

          Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

            The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defining the human deubiquitinating enzyme interaction landscape.

              Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                July 07 2012
                July 07 2012
                : 81
                : 1
                : 203-229
                Affiliations
                [1 ]Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; email:
                [2 ]Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; email:
                Article
                10.1146/annurev-biochem-060310-170328
                22524316
                fba34a7a-53c7-4c8b-869f-3e5138649545
                © 2012

                Comments

                Comment on this article