31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Replication of avian influenza viruses in equine tracheal epithelium but not in horses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exhaustively test our hypothesis, they do highlight that the tracheal explant culture system is a poor predictor of in vivo infectivity.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Sialic acid species as a determinant of the host range of influenza A viruses.

          The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the alpha2,6(SAalpha2,6Gal) linkage, while equine viruses favor SAalpha2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] and N-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcalpha2,6Gal but not NeuAcalpha2,3Gal or NeuGcalpha2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcalpha2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcalpha2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of a new avian-like influenza A virus from horses in China.

            In March 1989 a severe outbreak of respiratory disease occurred in horses in the Jilin and Heilongjiang provinces of Northeast China that caused up to 20% mortality in some herds. An influenza virus of the H3N8 subtype was isolated from the infected animals and was antigenically and molecularly distinguishable from the equine 2 (H3N8) viruses currently circulating in the world. The reference strain A/Equine/Jilin/1/89 (H3N8) was most closely related to avian H3N8 influenza viruses. Sequence comparisons of the entire hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and NS genes along with partial sequences of the three polymerase (PB1, PB2, PA) genes suggest that six of the eight gene segments (PA, HA, NP, NA, M, NS) are closely related to avian influenza viruses. Since direct sequence analysis can only provide a crude measure of relationship, phylogenetic analysis was done on the sequence information. Phylogenetic analyses of the entire HA, NP, M, and NS genes and of partial sequences of PB1, PB2, and PA indicated that these genes are of recent avian origin. The NP gene segment is closely related to the gene segment found in the newly described H14 subtype isolated from ducks in the USSR. The A/Equine/Jilin/1/89 (H3N8) influenza virus failed to replicate in ducks, but did replicate and cause disease in mice on initial inoculation and on subsequent passaging caused 100% mortality. In ferrets, the virus caused severe influenza symptoms. A second outbreak of influenza in horses in Northeast China occurred in April 1990 in the Heilongjiang province with 48% morbidity and no mortality. The viruses isolated from this outbreak were antigenically indistinguishable from those in the 1989 outbreak and it is probable that the reduced mortality was due to the immune status of of the horses in the region. No influenza was detected in horses in Northern China in the spring, summer, or fall of 1991 and no influenza has been detected in horses in adjacent areas. Our analysis suggests that this new equine influenza virus in horses in Northeast China is the latest influenza virus in mammals to emerge from the avian gene pool in nature and that it may have spread to horses without reassortment. The appearance of this new equine virus in China emphasizes the potential for whole avian influenza viruses to successfully enter mammalian hosts and serves as a model and a warning for the appearance of new pandemic influenza viruses in humans.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-scale evolution and phylodynamics of equine H3N8 influenza A virus.

              Equine influenza viruses (EIVs) of the H3N8 and H7N7 subtypes are the causative agents of an important disease of horses. While EIV H7N7 apparently is extinct, H3N8 viruses have circulated for more than 50 years. Like human influenza viruses, EIV H3N8 caused a transcontinental pandemic followed by further outbreaks and epidemics, even in populations with high vaccination coverage. Recently, EIV H3N8 jumped the species barrier to infect dogs. Despite its importance as an agent of infectious disease, the mechanisms that underpin the evolutionary and epidemiological dynamics of EIV are poorly understood, particularly at a genomic scale. To determine the evolutionary history and phylodynamics of EIV H3N8, we conducted an extensive analysis of 82 complete viral genomes sampled during a 45-year span. We show that both intra- and intersubtype reassortment have played a major role in the evolution of EIV, and we suggest that intrasubtype reassortment resulted in enhanced virulence while heterosubtypic reassortment contributed to the extinction of EIV H7N7. We also show that EIV evolves at a slower rate than other influenza viruses, even though it seems to be subject to similar immune selection pressures. However, a relatively high rate of amino acid replacement is observed in the polymerase acidic (PA) segment, with some evidence for adaptive evolution. Most notably, an analysis of viral population dynamics provided evidence for a major population bottleneck of EIV H3N8 during the 1980s, which we suggest resulted from changes in herd immunity due to an increase in vaccination coverage.
                Bookmark

                Author and article information

                Journal
                Influenza Other Respir Viruses
                Influenza Other Respir Viruses
                10.1111/(ISSN)1750-2659
                IRV
                Influenza and Other Respiratory Viruses
                John Wiley and Sons Inc. (Hoboken )
                1750-2640
                1750-2659
                14 November 2013
                December 2013
                : 7
                : Suppl Suppl 4 , Proceedings of the 2 nd International Symposium on Neglected Influenza Viruses, Dublin, Ireland, 7‐8 March 2013. Edited by: Thomas Chambers and Ariel Pereda. Publication of this supplement was supported by isirv. ( doiID: 10.1111/irv.2013.7.issue-s4 )
                : 90-93
                Affiliations
                [ 1 ] Maxwell H. Gluck Equine Research Center Department of Veterinary Science University of Kentucky Lexington KY USA
                Author notes
                [*] [* ] Correspondence: Thomas M. Chambers, Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546‐0099, USA. E‐mail: tmcham1@ 123456uky.edu
                Article
                IRV12188
                10.1111/irv.12188
                5655884
                24224824
                fbaf6ba3-9678-41ec-8ce8-d1ef442b1297
                © 2013 Blackwell Publishing Ltd
                History
                Page count
                Pages: 4
                Funding
                Funded by: Kentucky Science and Engineering Foundation
                Award ID: KSEF‐2445‐RDE‐014
                Funded by: Kentucky Agricultural Experiment Station
                Award ID: KY014041
                Award ID: 014042
                Categories
                Short Article
                Short Article
                Custom metadata
                2.0
                irv12188
                December 2013
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.1 mode:remove_FC converted:23.10.2017

                Infectious disease & Microbiology
                avian influenza,equine influenza,host range,interspecies transmission,organ culture

                Comments

                Comment on this article