6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feynman-Kac equation for anomalous processes with space- and time-dependent forces

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functionals of a stochastic process Y(t) model many physical time-extensive observables, e.g. particle positions, local and occupation times or accumulated mechanical work. When Y(t) is a normal diffusive process, their statistics are obtained as the solution of the Feynman-Kac equation. This equation provides the crucial link between the expected values of diffusion processes and the solutions of deterministic second-order partial differential equations. When Y(t) is an anomalous diffusive process, generalizations of the Feynman-Kac equation that incorporate power-law or more general waiting time distributions of the underlying random walk have recently been derived. A general representation of such waiting times is provided in terms of a L\'evy process whose Laplace exponent is related to the memory kernel appearing in the generalized Feynman-Kac equation. The corresponding anomalous processes have been shown to capture nonlinear mean square displacements exhibiting crossovers between different scaling regimes, which have been observed in biological systems like migrating cells or diffusing macromolecules in intracellular environments. However, the case where both space- and time-dependent forces drive the dynamics of the generalized anomalous process has not been solved yet. Here, we present the missing derivation of the Feynman-Kac equation in such general case by using the subordination technique. Furthermore, we discuss its extension to functionals explicitly depending on time, which are relevant for the stochastic thermodynamics of anomalous diffusive systems. Exact results on the work fluctuations of a simple non-equilibrium model are obtained. In this paper we also provide a pedagogical introduction to L\'evy processes, semimartingales and their associated stochastic calculus, which underlie the mathematical formulation of anomalous diffusion as a subordinated process.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells

          Chemokines play a central role in regulating processes essential to the immune function of T cells 1-3 , such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen T. gondii in the brains of chronically infected mice. This chemokine boosts T cell function in two different ways: it maintains the effector T cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Remarkably, these statistics are not Brownian; rather, CD8+ T cell motility in the brain is well described by a generalized Lévy walk. According to our model, this surprising feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T cell behavior is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys 4-10 , and CXCL10 aids T cells in shortening the average time to find rare targets.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            From continuous time random walks to the fractional Fokker-Planck equation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Langevin Equation and Thermodynamics

                Bookmark

                Author and article information

                Journal
                2017-01-06
                Article
                1701.01641
                fbb1c271-e95b-4644-a977-9935a97d4175

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Invited contribution to the J. Phys. A special issue Emerging Talents
                cond-mat.stat-mech cond-mat.dis-nn math-ph math.MP

                Mathematical physics,Condensed matter,Mathematical & Computational physics,Theoretical physics

                Comments

                Comment on this article