+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Branched chain amino acid catabolism fuels adipocyte differentiation and lipogenesis


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, though less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre–adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid metabolism and lipogenesis. In contrast to proliferating cells that use glucose and glutamine for acetyl–coenzyme A (AcCoA) generation, differentiated adipocytes increased branched chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from media and/or protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd–chain fatty acid synthesis. B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism plays a functional role in adipocyte differentiation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Bidirectional transport of amino acids regulates mTOR and autophagy.

          Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
            • Record: found
            • Abstract: found
            • Article: not found

            A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism

            Summary The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regulates the expression of carbohydrate responsive-element binding protein (ChREBP), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose-ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We discovered a new mechanism for glucose-regulation of ChREBP: Glucose-mediated activation of the canonical ChREBP isoform (ChREBPα) induces expression of a novel, potent isoform (ChREBPβ) that is transcribed from an alternative promoter. ChREBPβ expression in human adipose tissue predicts insulin sensitivity indicating that it may be an effective target for treating diabetes.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

              Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery.

                Author and article information

                Nat Chem Biol
                Nat. Chem. Biol.
                Nature chemical biology
                23 October 2015
                16 November 2015
                January 2016
                01 July 2016
                : 12
                : 1
                : 15-21
                [a ]Department of Bioengineering, University of California–San Diego, La Jolla, CA 92093
                [b ]Department of Pharmacology, University of California–San Diego, La Jolla, CA 92093
                [c ]Veterans Affairs San Diego Healthcare System, San Diego, CA; Department of Medicine, University of California, San Diego, La Jolla, CA
                [d ]Medicine, University of California, San Diego, La Jolla, CA
                [e ]Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA
                Author notes
                To whom correspondence should be addressed: Christian M. Metallo, Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC–0412 PFBH 204, La Jolla, CA 92093, USA, Tel.: (858) 534–8209; cmetallo@ 123456eng.ucsd.edu

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms




                Comment on this article