24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone Marrow Fat and Hematopoiesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are “inert space fillers” has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and expression cloning of a leptin receptor, OB-R.

          The ob gene product, leptin, is an important circulating signal for the regulation of body weight. To identify high affinity leptin-binding sites, we generated a series of leptin-alkaline phosphatase (AP) fusion proteins as well as [125I]leptin. After a binding survey of cell lines and tissues, we identified leptin-binding sites in the mouse choroid plexus. A cDNA expression library was prepared from mouse choroid plexus and screened with a leptin-AP fusion protein to identify a leptin receptor (OB-R). OB-R is a single membrane-spanning receptor most related to the gp130 signal-transducing component of the IL-6 receptor, the G-CSF receptor, and the LIF receptor. OB-R mRNA is expressed not only in choroid plexus, but also in several other tissues, including hypothalamus. Genetic mapping of the gene encoding OB-R shows that it is within the 5.1 cM interval of mouse chromosome 4 that contains the db locus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.

            Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age.

              In the human hematopoietic system, aging is associated with decreased bone marrow cellularity, decreased adaptive immune system function, and increased incidence of anemia and other hematological disorders and malignancies. Recent studies in mice suggest that changes within the hematopoietic stem cell (HSC) population during aging contribute significantly to the manifestation of these age-associated hematopoietic pathologies. Though the mouse HSC population has been shown to change both quantitatively and functionally with age, changes in the human HSC and progenitor cell populations during aging have been incompletely characterized. To elucidate the properties of an aged human hematopoietic system that may predispose to age-associated hematopoietic dysfunction, we evaluated immunophenotypic HSC and other hematopoietic progenitor populations from healthy, hematologically normal young and elderly human bone marrow samples. We found that aged immunophenotypic human HSC increase in frequency, are less quiescent, and exhibit myeloid-biased differentiation potential compared with young HSC. Gene expression profiling revealed that aged immunophenotypic human HSC transcriptionally up-regulate genes associated with cell cycle, myeloid lineage specification, and myeloid malignancies. These age-associated alterations in the frequency, developmental potential, and gene expression profile of human HSC are similar to those changes observed in mouse HSC, suggesting that hematopoietic aging is an evolutionarily conserved process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                28 November 2018
                2018
                : 9
                : 694
                Affiliations
                Department of Hematology, West China Hospital, Sichuan University , Chengdu, China
                Author notes

                Edited by: Xinhua Qu, Shanghai JiaoTong University School of Medicine, China

                Reviewed by: Jan Tuckermann, Universität Ulm, Germany; Tamás Röszer, Universität Ulm, Germany

                *Correspondence: Yuping Gong gongyuping2010@ 123456aliyun.com

                This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                †These authors have contributed equally to this work

                Article
                10.3389/fendo.2018.00694
                6280186
                30546345
                fbd316ae-cddc-480c-b769-e66cab86d12b
                Copyright © 2018 Wang, Leng and Gong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 June 2018
                : 05 November 2018
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 109, Pages: 9, Words: 8109
                Funding
                Funded by: Foundation of the Science and Technology Department of Sichuan Province 10.13039/501100004829
                Award ID: 2015SZ0234-5
                Funded by: Foundation of Science and Technology Bureau of Chengdu
                Award ID: 2016-HM01-00001-SF
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                bone marrow fat,hematopoiesis,leukemia,aplastic anemia,multiple myeloma
                Endocrinology & Diabetes
                bone marrow fat, hematopoiesis, leukemia, aplastic anemia, multiple myeloma

                Comments

                Comment on this article