55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential microRNA expression following infection with a mouse-adapted, highly virulent avian H5N2 virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus.

          Results

          Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p, miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal dose 50% (MLD 50) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality of inoculated mice to 70% and substantially delayed death.

          Conclusions

          Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors to target genes associated with the immune response or cell death may affect virulence and virus replication.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12866-014-0252-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.

          M Hatta (2001)
          In 1997, an H5N1 influenza A virus was transmitted from birds to humans in Hong Kong, killing 6 of the 18 people infected. When mice were infected with the human isolates, two virulence groups became apparent. Using reverse genetics, we showed that a mutation at position 627 in the PB2 protein influenced the outcome of infection in mice. Moreover, high cleavability of the hemagglutinin glycoprotein was an essential requirement for lethal infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of progenitor cell proliferation and granulocyte function by microRNA-223.

            MicroRNAs are abundant in animal genomes and have been predicted to have important roles in a broad range of gene expression programmes. Despite this prominence, there is a dearth of functional knowledge regarding individual mammalian microRNAs. Using a loss-of-function allele in mice, we report here that the myeloid-specific microRNA-223 (miR-223) negatively regulates progenitor proliferation and granulocyte differentiation and activation. miR-223 (also called Mirn223) mutant mice have an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors. We show that Mef2c, a transcription factor that promotes myeloid progenitor proliferation, is a target of miR-223, and that genetic ablation of Mef2c suppresses progenitor expansion and corrects the neutrophilic phenotype in miR-223 null mice. In addition, granulocytes lacking miR-223 are hypermature, hypersensitive to activating stimuli and display increased fungicidal activity. As a consequence of this neutrophil hyperactivity, miR-223 mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated tissue destruction after endotoxin challenge. Our data support a model in which miR-223 acts as a fine-tuner of granulocyte production and the inflammatory response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic.

              The influenza pandemic of 1918-20 is recognized as having generally taken place in three waves, starting in the northern spring and summer of 1918. This pattern of three waves, however, was not universal: in some locations influenza seems to have persisted into or returned in 1920. The recorded statistics of influenza morbidity and mortality are likely to be a significant understatement. Limitations of these data can include nonregistration, missing records, misdiagnosis, and nonmedical certification, and may also vary greatly between locations. Further research has seen the consistent upward revision of the estimated global mortality of the pandemic, which a 1920s calculation put in the vicinity of 21.5 million. A 1991 paper revised the mortality as being in the range 24.7-39.3 million. This paper suggests that it was of the order of 50 million. However, it must be acknowledged that even this vast figure may be substantially lower than the real toll, perhaps as much as 100 percent understated.
                Bookmark

                Author and article information

                Contributors
                smcmg13@naver.com
                hbkim@dankook.ac.kr
                microuni@chungbuk.ac.kr
                dealereh@hanmail.net
                pnpascua@yahoo.com
                krapjin@hanmail.net
                skyzzang0@daum.net
                llkkjj33@hanmail.net
                daring0530@naver.com
                skylove1719@hanmail.net
                choiki55@chungbuk.ac.kr
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                30 September 2014
                30 September 2014
                2014
                : 14
                : 1
                : 252
                Affiliations
                [ ]College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju, 361-763 Republic of Korea
                [ ]Department of Animal Resources Science, Dankook University, Dandae-ro 119, Cheonan, 330-714 Republic of Korea
                Article
                252
                10.1186/s12866-014-0252-0
                4189662
                25266911
                fbd5e242-95c9-465c-8068-bca784f7c727
                © Choi et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 July 2014
                : 23 September 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Microbiology & Virology
                influenza a virus,microrna,inhibitor,virulence,replication
                Microbiology & Virology
                influenza a virus, microrna, inhibitor, virulence, replication

                Comments

                Comment on this article