28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The cochlear frequency map of the mustache bat, Pteronotus parnellii.

      Brain research. Brain research reviews
      Animals, Biomechanical Phenomena, Chiroptera, physiology, Cochlea, anatomy & histology, Cochlear Nerve, Female, Male, Pitch Perception, Pons, Species Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The frequency-place map of the cochlea of mustache bats was constructed by the analysis of HRP-transport patterns in spiral ganglion cells following iontophoretic tracer injections into cochlear nucleus regions responsive to different frequencies. The cochlea consists of 5 half turns (total length 14.3 mm) and the representation of certain frequency bands can be assigned to specific cochlear regions: The broad high frequency range between 70 and 111 kHz is represented in the most basal half turn within only 3.2 mm. This region is terminated apically by a distinct narrowing of the scala vestibuli that coincides with a pronounced increase in basilar membrane (BM) thickness. The narrow intermediate frequency range between 54 and 70 kHz is expanded onto 50% of cochlear length between 4.0 and 11.1 mm distance from apex. The frequency range around 60 kHz, where the tuning characteristics of the auditory system are exceptionally sharp, is located in the center of this expanded BM-region in the second half turn within a maximum of innervation density. These data can account for the vast overrepresentation of neurons sharply tuned to about 60 kHz at central stations of the auditory pathway. In the cochlear region just basal to the innervation maximum, where label from injections at 66 and 70 kHz was found, a number of morphological specializations coincide: the BM is maximally thickened, innervation density is low, the spiral ligament is locally enlarged, and the 'thick lining', a dense covering of the scala tympani throughout the basal halfturn, suddenly disappears. Low frequencies up to 54 kHz are represented within the apical half turns over a 4 mm span of the basilar membrane. The data are compared to the cochlea of horseshoe bats and the possible functional role of the morphological discontinuities for sharp tuning and the generation of otoacoustic emissions is discussed.

          Related collections

          Author and article information

          Journal
          3837108
          10.1007/BF01351362

          Chemistry
          Animals,Biomechanical Phenomena,Chiroptera,physiology,Cochlea,anatomy & histology,Cochlear Nerve,Female,Male,Pitch Perception,Pons,Species Specificity

          Comments

          Comment on this article