55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokines and Chemokines in Cerebral Malaria Pathogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebral malaria is among the major causes of malaria-associated mortality and effective adjunctive therapeutic strategies are currently lacking. Central pathophysiological processes involved in the development of cerebral malaria include an imbalance of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell activation, and loss of blood-brain barrier integrity. However, the sequence of events, which initiates these pathophysiological processes as well as the contribution of their complex interplay to the development of cerebral malaria remain incompletely understood. Several cytokines and chemokines have repeatedly been associated with cerebral malaria severity. Increased levels of these inflammatory mediators could account for the sequestration of leukocytes in the cerebral microvasculature present during cerebral malaria, thereby contributing to an amplification of local inflammation and promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model. A better molecular understanding of these processes could provide the basis for evidence-based development of adjunct therapies and the definition of diagnostic markers of disease progression.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial.

          In the treatment of severe malaria, intravenous artesunate is more rapidly acting than intravenous quinine in terms of parasite clearance, is safer, and is simpler to administer, but whether it can reduce mortality is uncertain. We did an open-label randomised controlled trial in patients admitted to hospital with severe falciparum malaria in Bangladesh, India, Indonesia, and Myanmar. We assigned individuals intravenous artesunate 2.4 mg/kg bodyweight given as a bolus (n=730) at 0, 12, and 24 h, and then daily, or intravenous quinine (20 mg salt per kg loading dose infused over 4 h then 10 mg/kg infused over 2-8 h three times a day; n=731). Oral medication was substituted when possible to complete treatment. Our primary endpoint was death from severe malaria, and analysis was by intention to treat. We assessed all patients randomised for the primary endpoint. Mortality in artesunate recipients was 15% (107 of 730) compared with 22% (164 of 731) in quinine recipients; an absolute reduction of 34.7% (95% CI 18.5-47.6%; p=0.0002). Treatment with artesunate was well tolerated, whereas quinine was associated with hypoglycaemia (relative risk 3.2, 1.3-7.8; p=0.009). Artesunate should become the treatment of choice for severe falciparum malaria in adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children.

            The candidate malaria vaccine RTS,S/AS01 is being evaluated in order to inform a decision regarding its inclusion in routine vaccination schedules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9.

              Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. "Synthetic" HZ (beta-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the crystal, beta-hematin had no inflammatory activity. In contrast, natural HZ from Plasmodium falciparum cultures was a potent TLR9 inducer. Natural HZ bound recombinant TLR9 ectodomain, but not TLR2. Both TLR9 stimulation and TLR9 binding of HZ were abolished by nuclease treatment. PCR analysis demonstrated that natural HZ is coated with malarial but not human DNA. Purified malarial DNA activated TLR9 but only when DNA was targeted directly to the endosome with a transfection reagent. Stimulatory quantities of natural HZ contain <1 microg of malarial DNA; its potency in activating immune responses was even greater than transfecting malarial DNA. Thus, although the malarial genome is extremely AT-rich, its DNA is highly proinflammatory, with the potential to induce cytokinemia and fever during disease. However, its activity depends on being bound to HZ, which we propose amplifies the biological responses to malaria DNA by targeting it to a TLR9(+) intracellular compartment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                20 July 2017
                2017
                : 7
                : 324
                Affiliations
                [1] 1Parasitology Unit, Max Planck Institute for Infection Biology Berlin, Germany
                [2] 2Institute of Chemistry and Biochemistry, Free University Berlin, Germany
                [3] 3Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Germany
                Author notes

                Edited by: Slobodan Paessler, University of Texas Medical Branch, United States

                Reviewed by: Tracey Lamb, University of Utah, United States; Teresa Carvalho, La Trobe University, Australia

                *Correspondence: Josefine Dunst dunstj@ 123456zedat.fu-berlin.de
                Article
                10.3389/fcimb.2017.00324
                5517394
                28775960
                fbe4f693-282e-489f-aefd-c9bb17895f36
                Copyright © 2017 Dunst, Kamena and Matuschewski.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 February 2017
                : 03 July 2017
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 159, Pages: 16, Words: 14009
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: KA 3347/4-1
                Funded by: Max-Planck-Gesellschaft 10.13039/501100004189
                Categories
                Microbiology
                Review

                Infectious disease & Microbiology
                malaria,plasmodium,cerebral malaria,cytokines,chemokines,endothelial activation,blood-brain barrier,neuroinflammation

                Comments

                Comment on this article