127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Depression and Hippocampal Neurogenesis: A Road to Remission?

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adult-generated hippocampal neurons are required for mood control and antidepressant efficacy, raising hopes that someday we can harness the power of new neurons to treat mood disorders such as depression. However, conflicting findings from preclinical research—involving stress, depression, and neurogenesis—highlight the complexity of considering neurogenesis as a road to remission from depression. To reconcile differences in the literature, we introduce the “neurogenic interactome,” a platform from which to consider the diverse and dynamic factors regulating neurogenesis. We propose consideration of the varying perspectives—system, region, and local regulation of neurogenesis—offered by the interactome and exchange of ideas between the fields of learning and memory and mood disorder research to clarify the role of neurogenesis in the etiology and treatment of depression.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Adult hippocampal neurogenesis buffers stress responses and depressive behavior

          Summary Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness 1, 2 . In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis 3 . Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking 4, 5 . Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioral components of the stress response. Using transgenic and radiation methods to specifically inhibit adult neurogenesis, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice compared with intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis 6, 7 . Relative to controls, neurogenesis-deficient mice showed increased food avoidance in a novel environment after acute stress, increased behavioral despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression.

            Understanding the physiopathology of affective disorders and their treatment relies on the availability of experimental models that accurately mimic aspects of the disease. Here we describe a mouse model of an anxiety/depressive-like state induced by chronic corticosterone treatment. Furthermore, chronic antidepressant treatment reversed the behavioral dysfunctions and the inhibition of hippocampal neurogenesis induced by corticosterone treatment. In corticosterone-treated mice where hippocampal neurogenesis is abolished by X-irradiation, the efficacy of fluoxetine is blocked in some, but not all, behavioral paradigms, suggesting both neurogenesis-dependent and -independent mechanisms of antidepressant action. Finally, we identified a number of candidate genes, the expression of which is decreased by chronic corticosterone and normalized by chronic fluoxetine treatment selectively in the hypothalamus. Importantly, mice deficient in one of these genes, beta-arrestin 2, displayed a reduced response to fluoxetine in multiple tasks, suggesting that beta-arrestin signaling is necessary for the antidepressant effects of fluoxetine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion.

              Adult-born granule cells (GCs), a minor population of cells in the hippocampal dentate gyrus, are highly active during the first few weeks after functional integration into the neuronal network, distinguishing them from less active, older adult-born GCs and the major population of dentate GCs generated developmentally. To ascertain whether young and old GCs perform distinct memory functions, we created a transgenic mouse in which output of old GCs was specifically inhibited while leaving a substantial portion of young GCs intact. These mice exhibited enhanced or normal pattern separation between similar contexts, which was reduced following ablation of young GCs. Furthermore, these mutant mice exhibited deficits in rapid pattern completion. Therefore, pattern separation requires adult-born young GCs but not old GCs, and older GCs contribute to the rapid recall by pattern completion. Our data suggest that as adult-born GCs age, their function switches from pattern separation to rapid pattern completion. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                October 04 2012
                October 05 2012
                October 05 2012
                October 04 2012
                : 338
                : 6103
                : 72-75
                Article
                10.1126/science.1222941
                3756889
                23042885
                fbe54a7a-0d87-48df-b589-9b85bc73fde6
                © 2012
                History

                Comments

                Comment on this article