113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present work adopted a systems pharmacology-based approach to provide new insights into the active compounds and therapeutic targets of Bufei Yishen formula (BYF) for the treatment of chronic obstructive pulmonary disease (COPD). In addition, we established a rat model of cigarette smoke- and bacterial infection-induced COPD to validate the mechanisms of BYF action that were predicted in systems pharmacology study. The systems pharmacology model derived 216 active compounds from BYF and 195 potential targets related to various diseases. The compound-target network showed that each herbal drug in the BYF formula acted on similar targets, suggesting potential synergistic effects among these herbal drugs. The ClueGo assay, a Cytoscape plugin, revealed that most targets were related to activation of MAP kinase and matrix metalloproteinases. By using target-diseases network analysis, we found that BYF had great potential to treatment of multiple diseases, such as respiratory tract diseases, immune system, and cardiovascular diseases. Furthermore, we found that BYF had the ability to prevent COPD and its comorbidities, such as ventricular hypertrophy, in vivo. Moreover, BYF inhibited the inflammatory cytokine, and hypertrophic factors expression, protease-antiprotease imbalance and the collagen deposition, which may be the underlying mechanisms of action of BYF.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease.

          Although cigarette smoking is the most important cause of chronic obstructive pulmonary disease (COPD), a substantial proportion of COPD cases cannot be explained by smoking alone. To evaluate the risk factors for COPD besides personal cigarette smoking. We constituted an ad hoc subcommittee of the American Thoracic Society Environmental and Occupational Health Assembly. An international group of members was invited, based on their scientific expertise in a specific risk factor for COPD. For each risk factor area, the committee reviewed the literature, summarized the evidence, and developed conclusions about the likelihood of it causing COPD. All conclusions were based on unanimous consensus. The population-attributable fraction for smoking as a cause of COPD ranged from 9.7 to 97.9%, but was less than 80% in most studies, indicating a substantial burden of disease attributable to nonsmoking risk factors. On the basis of our review, we concluded that specific genetic syndromes and occupational exposures were causally related to the development of COPD. Traffic and other outdoor pollution, secondhand smoke, biomass smoke, and dietary factors are associated with COPD, but sufficient criteria for causation were not met. Chronic asthma and tuberculosis are associated with irreversible loss of lung function, but there remains uncertainty about whether there are important phenotypic differences compared with COPD as it is typically encountered in clinical settings. In public health terms, a substantive burden of COPD is attributable to risk factors other than smoking. To prevent COPD-related disability and mortality, efforts must focus on prevention and cessation of exposure to smoking and these other, less well-recognized risk factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luteolin, a flavonoid with potential for cancer prevention and therapy.

            Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans.

              Pharmacokinetic studies have shown that the small intestine is the major site of absorption for many flavonoid glucosides. Flavonoids are generally present as glycosylated forms in plants and foods, but there is increasing evidence that the forms reaching the systemic circulation are glucuronidated, sulphated and methylated derivatives. Hence, first-pass metabolism (small intestine-liver) appears to involve a critical deglycosylation step for which the mechanisms are not known. To explore the hypothesis that deglycosylation is a prerequisite to absorption and metabolism of dietary flavonoid glycosides, to identify the enzymes responsible, and relate their specificities with absorption kinetics. Flavonoid glycoside hydrolysing enzymes were isolated from samples of human small intestine and liver using chromatographic techniques. The proteins were characterised with respect to the cellular fraction with which they were associated, molecular weight, specificity for various substrates, and cross-reactions with antibodies. Cellular models were used to mimic the small intestine. Protein extracts from human jejunal mucosa were highly efficient in hydrolysing flavonoid glycosides, consistent with an enterocyte-mediated deglycosylation process. Considerable inter-individual variation was observed [e. g. range, mean and standard deviation for rate of hydrolysis of quercetin-3-glucoside (n = 10) were 6.7-456, 96, and 134 nmol min(-1) (mg protein)(-1), respectively]. Two beta-glucosidases with activity towards flavonoid glycosides were isolated from human small intestine mucosa: lactase-phlorizin hydrolase (LPH; localised to the apical membrane of small intestinal epithelial cells) and cytosolic beta-glucosidase (CBG), indicating a role of human LPH and CBG from small intestine in flavonoid absorption and metabolism. Hydrolysis of flavonoid glycosides was only detected in cultured cells exhibiting beta-glucosidase activity. The absorption of dietary flavonoid glycosides in humans involves a critical deglycosylation step that is mediated by epithelial beta-glucosidases (LPH and CBG). The significant variation in beta-glucosidase activity between individuals may be a factor determining variation in flavonoid bioavailability.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 October 2015
                2015
                : 5
                : 15290
                Affiliations
                [1 ]Henan University of Traditional Chinese Medicine , Zhengzhou 450046, China
                [2 ]Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province , Zhengzhou 450046, China
                [3 ]Center of Bioinformatics, Northwest A & F University , Yangling, Shaanxi 712100, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep15290
                10.1038/srep15290
                4606809
                26469778
                fbfa564a-54be-4d05-a04f-804b9f3e7341
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 June 2015
                : 22 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article