64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome sequence of Yersinia pestis, the causative agent of plague.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences.

          Salmonella enterica serotype Typhi differs from nontyphoidal Salmonella serotypes by its strict host adaptation to humans and higher primates. Since fimbriae have been implicated in host adaptation, we investigated whether the serotype Typhi genome contains fimbrial operons which are unique to this pathogen or restricted to typhoidal Salmonella serotypes. This study established for the first time the total number of fimbrial operons present in an individual Salmonella serotype. The serotype Typhi CT18 genome, which has been sequenced by the Typhi Sequencing Group at the Sanger Centre, contained a type IV fimbrial operon, an orthologue of the agf operon, and 12 putative fimbrial operons of the chaperone-usher assembly class. In addition to sef, fim, saf, and tcf, which had been described previously in serotype Typhi, we identified eight new putative chaperone-usher-dependent fimbrial operons, which were termed bcf, sta, stb, ste, std, stc, stg, and sth. Hybridization analysis performed with 16 strains of Salmonella reference collection C and 22 strains of Salmonella reference collection B showed that all eight putative fimbrial operons of serotype Typhi were also present in a number of nontyphoidal Salmonella serotypes. Thus, a simple correlation between host range and the presence of a single fimbrial operon seems at present unlikely. However, the serotype Typhi genome differed from that of all other Salmonella serotypes investigated in that it contained a unique combination of putative fimbrial operons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid.

            Population genetic studies suggest that Yersinia pestis, the cause of plague, is a clonal pathogen that has recently emerged from Yersinia pseudotuberculosis. Plasmid acquisition is likely to have been a key element in this evolutionary leap from an enteric to a flea-transmitted systemic pathogen. However, the origin of Y. pestis-specific plasmids remains obscure. We demonstrate specific plasmid rearrangements in different Y. pestis strains which distinguish Y. pestis bv. Orientalis strains from other biovars. We also present evidence for plasmid-associated DNA exchange between Y. pestis and the exclusively human pathogen Salmonella enterica serovar Typhi.
              Bookmark

              Author and article information

              Journal
              Nature
              Nature
              Springer Science and Business Media LLC
              0028-0836
              0028-0836
              Oct 04 2001
              : 413
              : 6855
              Affiliations
              [1 ] The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. parkhill@sanger.ac.uk
              Article
              35097083
              10.1038/35097083
              11586360
              fc01c1b8-fcdc-4537-ace6-15087fa0de12
              History

              Comments

              Comment on this article