51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Secretion of RNAs in extracellular vesicles is a newly recognized form of intercellular communication. A potential regulatory protein for microRNA (miRNA) secretion is the critical RNA-induced silencing complex (RISC) component Argonaute 2 (Ago2). Here, we use isogenic colon cancer cell lines to show that overactivity of KRAS due to mutation inhibits localization of Ago2 to multivesicular endosomes (MVEs) and decreases Ago2 secretion in exosomes. Mechanistically, inhibition of mitogen-activated protein kinase kinases (MEKs) I and II, but not Akt, reverses the effect of the activating KRAS mutation and leads to increased Ago2-MVE association and increased exosomal secretion of Ago2. Analysis of cells expressing mutant Ago2 constructs revealed that phosphorylation of Ago2 on serine 387 prevents Ago2-MVE interactions and reduces Ago2 secretion into exosomes. Furthermore, regulation of Ago2 exosomal sorting controls the levels of three candidate miRNAs in exosomes. These data identify a key regulatory signaling event that controls Ago2 secretion in exosomes.

          Graphical abstract

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells.

          MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes.

            Functional biomolecules, including small noncoding RNAs (ncRNAs), are released and transmitted between mammalian cells via extracellular vesicles (EVs), including endosome-derived exosomes. The small RNA composition in cells differs from exosomes, but underlying mechanisms have not been established. We generated small RNA profiles by RNA sequencing (RNA-seq) from a panel of human B cells and their secreted exosomes. A comprehensive bioinformatics and statistical analysis revealed nonrandomly distributed subsets of microRNA (miRNA) species between B cells and exosomes. Unexpectedly, 3' end adenylated miRNAs are relatively enriched in cells, whereas 3' end uridylated isoforms appear overrepresented in exosomes, as validated in naturally occurring EVs isolated from human urine samples. Collectively, our findings suggest that posttranscriptional modifications, notably 3' end adenylation and uridylation, exert opposing effects that may contribute, at least in part, to direct ncRNA sorting into EVs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS.

              Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
                Bookmark

                Author and article information

                Journal
                101573691
                39703
                Cell Rep
                Cell Rep
                Cell reports
                2211-1247
                29 April 2016
                21 April 2016
                3 May 2016
                05 May 2016
                : 15
                : 5
                : 978-987
                Affiliations
                [1 ]Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
                [2 ]Division of Cancer Cell Research, Kanagawa Cancer Center, Yokohama 241-8515, Japan
                [3 ]Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
                [4 ]Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
                [5 ]Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
                [6 ]Veterans Affairs Medical Center, Nashville, TN 37232, USA
                [7 ]Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
                Author notes
                [8]

                Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA

                Article
                NIHMS774306
                10.1016/j.celrep.2016.03.085
                4857875
                27117408
                fc1099d8-ebd4-4e67-9ba6-de47957df56d

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article