23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upconversion luminescence (UCL) detection based on rare-earth doped upconversion nanocrystals (UCNCs) as probes has been proved to exhibit a large anti-Stokes shift, no autofluorescence from biological samples, and no photobleaching. However, it is still a challenge to achieve a stable, reproducible solid-based UCL biosensor because of ineffective UCL of the UCNCs. In this work, we fabricated TiO2 inverse opal photonic crystals (IOPCs)/NaYF4:Yb(3+),Tm(3+) (Er(3+)) UCNC composite films, which can tremendously improve the overall UCL of Tm(3+) as high as 43-fold. Based on the fluorescence resonance energy transfer (FRET) and the specific interaction between biotin and avidin, a novel solid-based UC biosensor is presented for sensing avidin. This solid-based detection system is convenient for detection, and also can offer two parameters for detecting trace amounts of avidin, namely, the emission intensity and the fluorescence decay time. The sensor has a high sensitivity of 34 pmol(-1), a good linear relationship of 0.996 and a low detection limit of 48 pmol. It also exhibits excellent long-time photostability, and the absence of autofluorescence, and thus may have great potential for versatile applications in biodetection.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          Jun 07 2014
          : 6
          : 11
          Affiliations
          [1 ] State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China. songhw@jlu.edu.cn.
          Article
          10.1039/c4nr00224e
          24752220
          fc17a5bc-2246-44db-9905-676e7a659aa9
          History

          Comments

          Comment on this article