27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecology and life history of Meta bourneti (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy)

      research-article
      PeerJ
      PeerJ Inc.
      Spider, Troglophiles, Cave biology, Biospeleology, Occupancy, Abundance, Detection probability, Distribution, Species-habitat association, Oxychilus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The orb-weaver spider Meta bourneti Simon 1922 (Araneae: Tetragnathidae) is one of the most common cave predators occurring in the Mediterranean basin. Although the congeneric M. menardi represented the model species in several studies, our knowledge of M. bourneti is only founded on observations performed on a handful of populations. In this study M. bourneti spiders were studied in caves of Monte Albo (Sardinia, Italy) over a year. Generalized Linear Mixed Models were used to analyze spider occupancy inside cave environments, as well as spider abundance. Analyses on M. bourneti occupancy and abundance were also repeated for adults and juveniles separately. Generalized Linear Models, were used to weight species absence based on its detection probability. Linear Mixed Models were used to detect possible divergences in subterranean spatial use between adult and juvenile spiders. Although widespread on the mountain, M. bourneti generally showed low density and low detection probability. Most of the individuals observed were juveniles. The spiders generally occupied cave sectors with high ceilings that were deep enough to show particular microclimatic features. Adults tended to occupy less illuminated areas than juveniles, while the latter were more frequently found in sectors showing high humidity. The abundance of M. bourneti was strongly related to high humidity and the presence of two troglophile species, Hydromantes flavus Wake, Salvador & Alonso-Zarazaga, 2005 (Amphibia: Caudata) and Oxychilus oppressus (Shuttleworth, 1877) (Gastropoda: Panpulmonata). The abundance of juveniles was related to sector temperature and humidity, the presence of H. flavus and O. oppressus and to morphological sector features. However, when only adults were considered, no significant relationships were found. Adult and juvenile spiders did not differ in their spatial distribution inside the caves studied, but a seasonal distribution of the species along cave walls was observed. Microclimate was one of the most important features affecting both the presence and abundance of M. bourneti in subterranean environments. Individuals tended to occupy lower heights during hot seasons.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          unmarked: AnRPackage for Fitting Hierarchical Models of Wildlife Occurrence and Abundance

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect overwintering in a changing climate.

            Insects are highly successful animals inhabiting marine, freshwater and terrestrial habitats from the equator to the poles. As a group, insects have limited ability to regulate their body temperature and have thus required a range of strategies to support life in thermally stressful environments, including behavioural avoidance through migration and seasonal changes in cold tolerance. With respect to overwintering strategies, insects have traditionally been divided into two main groups: freeze tolerant and freeze avoiding, although this simple classification is underpinned by a complex of interacting processes, i.e. synthesis of ice nucleating agents, cryoprotectants, antifreeze proteins and changes in membrane lipid composition. Also, in temperate and colder climates, the overwintering ability of many species is closely linked to the diapause state, which often increases cold tolerance ahead of temperature-induced seasonal acclimatisation. Importantly, even though most species can invoke one or both of these responses, the majority of insects die from the effects of cold rather than freezing. Most studies on the effects of a changing climate on insects have focused on processes that occur predominantly in summer (development, reproduction) and on changes in distributions rather than winter survival per se. For species that routinely experience cold stress, a general hypothesis would be that predicted temperature increases of 1 degree C to 5 degrees C over the next 50-100 years would increase winter survival in some climatic zones. However, this is unlikely to be a universal effect. Negative impacts may occur if climate warming leads to a reduction or loss of winter snow cover in polar and sub-polar areas, resulting in exposure to more severe air temperatures, increasing frequency of freeze-thaw cycles and risks of ice encasement. Likewise, whilst the dominant diapause-inducing cue (photoperiod) will be unaffected by global climate change, higher temperatures may modify normal rates of development, leading to a decoupling of synchrony between diapause-sensitive life-cycle stages and critical photoperiods for diapause induction. In terms of climate warming and potential heat stress, the most recent predictions of summer temperatures in Europe of 40 degrees C or higher in 50-75 years, are close to the current upper lethal limit of some insects. Long-term data sets on insect distributions and the timing of annual migrations provide strong evidence for 'positive' responses to higher winter temperatures over timescales of the past 20-50 years in North America, Europe and Asia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Living in the branches: population dynamics and ecological processes in dendritic networks.

              Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                29 November 2018
                2018
                : 6
                : e6049
                Affiliations
                [-1] Department of Biogeography, Trier University , Trier, Germany
                [-2] Sezione di Zoologia “La Specola”, Museo di Storia Naturale dell’Università di Firenze , Firenze, Italy
                [-3] Natural Oasis , Prato, Prato, Italy
                Article
                6049
                10.7717/peerj.6049
                6275118
                30519514
                fc231085-4b5a-401b-b852-8aa979e73cbe
                ©2018 Lunghi

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 10 July 2018
                : 31 October 2018
                Funding
                The author received no funding for this work.
                Categories
                Animal Behavior
                Ecology
                Entomology
                Zoology

                spider,troglophiles,cave biology,biospeleology,occupancy,abundance,detection probability,distribution,species-habitat association,oxychilus

                Comments

                Comment on this article