64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural Coding of Cooperative vs. Affective Human Interactions: 150 ms to Code the Action's Purpose

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS) in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box) or affective (e.g., 2 people smiling and holding hands) interactions. The action's goal was automatically discriminated at about 150–170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC) for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37), the posterior CC, and the medial frontal gyrus (BA10/11) for the processing of affective interactions, particularly in the 155–175 ms time window. In a later time window (200–250 ms) the processing of cooperative interactions activated the left post-central gyrus (BA3), the left parahippocampal gyrus, the left superior frontal gyrus (BA10), as well as the right premotor cortex (BA6). Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220–500 ms). These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations.

          The parieto-frontal cortical circuit that is active during action observation is the circuit with mirror properties that has been most extensively studied. Yet, there remains controversy on its role in social cognition and its contribution to understanding the actions and intentions of other individuals. Recent studies in monkeys and humans have shed light on what the parieto-frontal cortical circuit encodes and its possible functional relevance for cognition. We conclude that, although there are several mechanisms through which one can understand the behaviour of other individuals, the parieto-frontal mechanism is the only one that allows an individual to understand the action of others 'from the inside' and gives the observer a first-person grasp of the motor goals and intentions of other individuals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empathic neural responses are modulated by the perceived fairness of others.

            The neural processes underlying empathy are a subject of intense interest within the social neurosciences. However, very little is known about how brain empathic responses are modulated by the affective link between individuals. We show here that empathic responses are modulated by learned preferences, a result consistent with economic models of social preferences. We engaged male and female volunteers in an economic game, in which two confederates played fairly or unfairly, and then measured brain activity with functional magnetic resonance imaging while these same volunteers observed the confederates receiving pain. Both sexes exhibited empathy-related activation in pain-related brain areas (fronto-insular and anterior cingulate cortices) towards fair players. However, these empathy-related responses were significantly reduced in males when observing an unfair person receiving pain. This effect was accompanied by increased activation in reward-related areas, correlated with an expressed desire for revenge. We conclude that in men (at least) empathic responses are shaped by valuation of other people's social behaviour, such that they empathize with fair opponents while favouring the physical punishment of unfair opponents, a finding that echoes recent evidence for altruistic punishment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The fusiform face area: a cortical region specialized for the perception of faces.

              Faces are among the most important visual stimuli we perceive, informing us not only about a person's identity, but also about their mood, sex, age and direction of gaze. The ability to extract this information within a fraction of a second of viewing a face is important for normal social interactions and has probably played a critical role in the survival of our primate ancestors. Considerable evidence from behavioural, neuropsychological and neurophysiological investigations supports the hypothesis that humans have specialized cognitive and neural mechanisms dedicated to the perception of faces (the face-specificity hypothesis). Here, we review the literature on a region of the human brain that appears to play a key role in face perception, known as the fusiform face area (FFA). Section 1 outlines the theoretical background for much of this work. The face-specificity hypothesis falls squarely on one side of a longstanding debate in the fields of cognitive science and cognitive neuroscience concerning the extent to which the mind/brain is composed of: (i) special-purpose ('domain-specific') mechanisms, each dedicated to processing a specific kind of information (e.g. faces, according to the face-specificity hypothesis), versus (ii) general-purpose ('domain-general') mechanisms, each capable of operating on any kind of information. Face perception has long served both as one of the prime candidates of a domain-specific process and as a key target for attack by proponents of domain-general theories of brain and mind. Section 2 briefly reviews the prior literature on face perception from behaviour and neurophysiology. This work supports the face-specificity hypothesis and argues against its domain-general alternatives (the individuation hypothesis, the expertise hypothesis and others). Section 3 outlines the more recent evidence on this debate from brain imaging, focusing particularly on the FFA. We review the evidence that the FFA is selectively engaged in face perception, by addressing (and rebutting) five of the most widely discussed alternatives to this hypothesis. In section 4, we consider recent findings that are beginning to provide clues into the computations conducted in the FFA and the nature of the representations the FFA extracts from faces. We argue that the FFA is engaged both in detecting faces and in extracting the necessary perceptual information to recognize them, and that the properties of the FFA mirror previously identified behavioural signatures of face-specific processing (e.g. the face-inversion effect). Section 5 asks how the computations and representations in the FFA differ from those occurring in other nearby regions of cortex that respond strongly to faces and objects. The evidence indicates clear functional dissociations between these regions, demonstrating that the FFA shows not only functional specificity but also area specificity. We end by speculating in section 6 on some of the broader questions raised by current research on the FFA, including the developmental origins of this region and the question of whether faces are unique versus whether similarly specialized mechanisms also exist for other domains of high-level perception and cognition.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                7 July 2011
                : 6
                : 7
                : e22026
                Affiliations
                [1 ]Department of Psychology, University of Milano-Bicocca, Milan, Italy
                [2 ]Institute of Molecular Bioimaging and Physiology, CNR, Milano-Segrate, Italy
                [3 ]Vita-Salute University and Division of Neuroscience, San Raffaele Scientific Insitute, Milan, Italy
                University of Regensburg, Germany
                Author notes

                Conceived and designed the experiments: AMP. Performed the experiments: FR LP. Analyzed the data: AMP FR LP. Contributed reagents/materials/analysis tools: AMP AZ. Wrote the paper: AMP. Contributed to study design and data discussion: AZ SC NC DP .

                Article
                PONE-D-11-03677
                10.1371/journal.pone.0022026
                3131384
                21760948
                fc30474a-27ff-4f10-a451-c1a00bfb9848
                Proverbio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 February 2011
                : 13 June 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Neuroscience
                Cognitive Neuroscience
                Social and Behavioral Sciences
                Psychology
                Sensory Perception

                Uncategorized
                Uncategorized

                Comments

                Comment on this article