24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.

          Related collections

          Most cited references200

          • Record: found
          • Abstract: found
          • Article: not found

          The canonical Notch signaling pathway: unfolding the activation mechanism.

          Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic landscapes of human breast and colorectal cancers.

            Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of c-MYC as a target of the APC pathway.

              The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                21 August 2019
                2019
                : 10
                : 711
                Affiliations
                [1] 1Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia , Rome, Italy
                [2] 2Department of Molecular Medicine, Sapienza University , Rome, Italy
                [3] 3Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University , Latina, Italy
                Author notes

                Edited by: William Cho, Queen Elizabeth Hospital (QEH), Hong Kong

                Reviewed by: Bradley Doble, McMaster University, Canada; Paola Rizzo, University of Ferrara, Italy

                *Correspondence: Maria Pelullo, Maria.Pelullo@ 123456iit.it ; Diana Bellavia, diana.bellavia@ 123456uniroma1.it

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2019.00711
                6736567
                31552081
                fc35d5e4-0baa-45fa-a09d-15d878d1a7d0
                Copyright © 2019 Pelullo, Zema, Nardozza, Checquolo, Screpanti and Bellavia

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2019
                : 05 July 2019
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 239, Pages: 16, Words: 7292
                Categories
                Genetics
                Review

                Genetics
                hedgehog,notch,wnt,tgf-β,signaling pathway,tumorigenesis
                Genetics
                hedgehog, notch, wnt, tgf-β, signaling pathway, tumorigenesis

                Comments

                Comment on this article