0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New insights into the roles for DYRK family in mammalian development and congenital diseases

      review-article
      ,
      Genes & Diseases
      Chongqing Medical University
      Ciliopathies, Development, Down syndrome, DYRKs, Embryogenesis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dual-specificity tyrosine-regulated kinase (DYRK) family is evolutionarily conserved from invertebrate to mammals. DYRKs regulate cell proliferation, apoptosis, survival, and differentiation by modifying the protein activation state, cellular localization, and turnover. In contrast to several studies in cellular models, the available evidence regarding the in vivo roles of DYRKs in mammalian development is limited. This review summarizes the in vivo studies on Dyrks which provide insight into their roles in mammalian tissue development and congenital diseases. In vivo evidence obtained using knockout and genetically modified animals helps to understand and develop novel clinical therapies and drug for human congenital diseases, such as Down syndrome and neuronal disorders (associated with DYRK1A) and skeletal ciliopathies (associated with DYRK2).

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes and molecular pathways underpinning ciliopathies

            Motile and non-motile primary cilia are nearly ubiquitous cellular organelles. Dysfunction of cilia is being found to cause increasing numbers of diseases that are known as ciliopathies. The characterization of ciliopathy-associated proteins and phenotypes is increasing our understanding of how cilia are formed and compartmentalized and how they function to maintain human health.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              p53, the cellular gatekeeper for growth and division.

              A J Levine (1997)
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                06 January 2022
                May 2023
                06 January 2022
                : 10
                : 3
                : 758-770
                Affiliations
                [1]Department of Biochemistry, The Jikei University School of Medicine, Minato-ku, Tokyo 105 8461, Japan
                Author notes
                []Corresponding author. kyoshida@ 123456jikei.ac.jp
                Article
                S2352-3042(21)00168-9
                10.1016/j.gendis.2021.12.004
                10308075
                fc37fcb6-9da9-4aa3-87b1-6e37934158e0
                © 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 July 2021
                : 4 November 2021
                : 6 December 2021
                Categories
                Review Article

                ciliopathies,development,down syndrome,dyrks,embryogenesis
                ciliopathies, development, down syndrome, dyrks, embryogenesis

                Comments

                Comment on this article