5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Eroding norms over release of self-spreading viruses

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study

          Summary Background Use of oral live-attenuated polio vaccines (OPV), and injected inactivated polio vaccines (IPV) has almost achieved global eradication of wild polio viruses. To address the goals of achieving and maintaining global eradication and minimising the risk of outbreaks of vaccine-derived polioviruses, we tested novel monovalent oral type-2 poliovirus (OPV2) vaccine candidates that are genetically more stable than existing OPVs, with a lower risk of reversion to neurovirulence. Our study represents the first in-human testing of these two novel OPV2 candidates. We aimed to evaluate the safety and immunogenicity of these vaccines, the presence and extent of faecal shedding, and the neurovirulence of shed virus. Methods In this double-blind, single-centre phase 1 trial, we isolated participants in a purpose-built containment facility at the University of Antwerp Hospital (Antwerp, Belgium), to minimise the risk of environmental release of the novel OPV2 candidates. Participants, who were recruited by local advertising, were adults (aged 18–50 years) in good health who had previously been vaccinated with IPV, and who would not have any contact with immunosuppressed or unvaccinated people for the duration of faecal shedding at the end of the study. The first participant randomly chose an envelope containing the name of a vaccine candidate, and this determined their allocation; the next 14 participants to be enrolled in the study were sequentially allocated to this group and received the same vaccine. The subsequent 15 participants enrolled after this group were allocated to receive the other vaccine. Participants and the study staff were masked to vaccine groups until the end of the study period. Participants each received a single dose of one vaccine candidate (candidate 1, S2/cre5/S15domV/rec1/hifi3; or candidate 2, S2/S15domV/CpG40), and they were monitored for adverse events, immune responses, and faecal shedding of the vaccine virus for 28 days. Shed virus isolates were tested for the genetic stability of attenuation. The primary outcomes were the incidence and type of serious and severe adverse events, the proportion of participants showing viral shedding in their stools, the time to cessation of viral shedding, the cell culture infective dose of shed virus in virus-positive stools, and a combined index of the prevalence, duration, and quantity of viral shedding in all participants. This study is registered with EudraCT, number 2017-000908-21 and ClinicalTrials.gov, number NCT03430349. Findings Between May 22 and Aug 22, 2017, 48 volunteers were screened, of whom 15 (31%) volunteers were excluded for reasons relating to the inclusion or exclusion criteria, three (6%) volunteers were not treated because of restrictions to the number of participants in each group, and 30 (63%) volunteers were sequentially allocated to groups (15 participants per group). Both novel OPV2 candidates were immunogenic and increased the median blood titre of serum neutralising antibodies; all participants were seroprotected after vaccination. Both candidates had acceptable tolerability, and no serious adverse events occurred during the study. However, severe events were reported in six (40%) participants receiving candidate 1 (eight events) and nine (60%) participants receiving candidate 2 (12 events); most of these events were increased blood creatinine phosphokinase but were not accompanied by clinical signs or symptoms. Vaccine virus was detected in the stools of 15 (100%) participants receiving vaccine candidate 1 and 13 (87%) participants receiving vaccine candidate 2. Vaccine poliovirus shedding stopped at a median of 23 days (IQR 15–36) after candidate 1 administration and 12 days (1–23) after candidate 2 administration. Total shedding, described by the estimated median shedding index (50% cell culture infective dose/g), was observed to be greater with candidate 1 than candidate 2 across all participants (2·8 [95% CI 1·8–3·5] vs 1·0 [0·7–1·6]). Reversion to neurovirulence, assessed as paralysis of transgenic mice, was low in isolates from those vaccinated with both candidates, and sequencing of shed virus indicated that there was no loss of attenuation in domain V of the 5ʹ-untranslated region, the primary site of reversion in Sabin OPV. Interpretation We found that the novel OPV2 candidates were safe and immunogenic in IPV-immunised adults, and our data support the further development of these vaccines to potentially be used for maintaining global eradication of neurovirulent type-2 polioviruses. Funding Bill & Melinda Gates Foundation.
            • Record: found
            • Abstract: found
            • Article: not found

            Attenuated and non‐haemadsorbing (non‐ HAD ) genotype II African swine fever virus ( ASFV ) isolated in Europe, Latvia 2017

            A non-haemadsorbing (non-HAD) ASF virus (ASFV) genotype II, namely Lv17/WB/Rie1, was isolated from a hunted wild boar in Latvia in 2017. Domestic pigs experimentally infected with the non-HAD ASFV developed a nonspecific or subclinical form of the disease. Two months later, these animals were fully protected when exposed to other domestic pigs infected with a related virulent HAD genotype II ASFV.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              How accurately can we assess zoonotic risk?

              Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic “risk assessment.” Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human–animal interface may be more productive. Determining which organisms harbour viruses that could potentially infect humans is of great topical interest. This Essay demonstrates that the data on which such zoonotic risk assessments are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery.

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 07 2022
                January 07 2022
                : 375
                : 6576
                : 31-33
                Affiliations
                [1 ]Departments of Global Health and Social Medicine and of War Studies, King’s College London, London, UK.
                [2 ]Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.
                [3 ]Federal Agency for Nature Conservation (BfN), Bonn, Germany.
                [4 ]Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
                [5 ]Department of Political Science and International Relations, University of Southern California, Los Angeles, CA, USA.
                [6 ]Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
                Article
                10.1126/science.abj5593
                34990258
                fc409197-7375-464e-bdea-890aa71dd83e
                © 2022
                History

                Comments

                Comment on this article

                Related Documents Log