18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice.

      Circulation
      Animals, Apoptosis, Arrhythmias, Cardiac, etiology, mortality, prevention & control, Calcium, metabolism, Calcium Channels, L-Type, physiology, Coronary Vessels, pathology, Electrocardiography, Mice, Mice, Inbred C57BL, Mice, Knockout, Monitoring, Physiologic, Myocardial Infarction, complications, Myocardial Ischemia, physiopathology, Nitric Oxide Synthase Type I, deficiency, genetics, Superoxides, Telemetry, Ventricular Dysfunction, Left

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal nitric oxide synthase (nNOS) is expressed in cardiomyocytes and plays a role in regulating cardiac function and Ca2+ homeostasis. However, the role of nNOS in cardiac electrophysiology after myocardial infarction (MI) is unclear. We hypothesized that nNOS deficiency increases ventricular arrhythmia and mortality after MI. MI was induced in wild-type (WT) or nNOS(-/-) mice by ligation of the left coronary artery. Thirty-day mortality was significantly higher in nNOS(-/-) compared with WT mice. Additionally, nNOS(-/-) mice had impaired cardiac function 2 days after MI. Telemetric ECG monitoring showed that compared with WT, nNOS(-/-) mice had significantly more ventricular arrhythmias and were more likely to develop ventricular fibrillation after MI. Treatment with the L-type Ca2+ channel blocker verapamil reduced the incidence of arrhythmia and ventricular fibrillation in nNOS(-/-) mice after MI. To assess the role of nNOS in Ca2+ handling, patch-clamp and Ca2+ fluorescence techniques were used. Ca2+ transients and L-type Ca2+ currents were higher in nNOS(-/-) compared with WT cardiomyocytes. Additionally, nNOS(-/-) cardiomyocytes exhibited significantly higher systolic and diastolic Ca2+ over a range of pacing frequencies. Treatment with the NO donor S-nitroso N-acetyl-penicillamine decreased Ca2+ transients and L-type Ca2+ current in both nNOS(-/-) and WT cardiomyocytes. Furthermore, S-nitrosylation of Ca2+ handling proteins was significantly decreased in nNOS(-/-) myocardium after MI. Deficiency in nNOS increases ventricular arrhythmia and mortality after MI in mice. The antiarrhythmic effect of nNOS involves inhibition of L-type Ca2+ channel activity and regulation of Ca2+ handling proteins via S-nitrosylation.

          Related collections

          Author and article information

          Comments

          Comment on this article