32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing

      research-article
      1 , 1 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2 +/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2 +/- Akita and Ins2 +/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 ( BMP10) was the most upregulated and hairy and enhancer of split-related ( HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 ( Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand ( WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets.

            Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice.

              In this article, we report on a nonobese C57BL/6 (B6) mouse model of NIDDM named Akita mouse, characterized by early age onset and autosomal dominant mode of inheritance. At 7 weeks of age, the mean morning blood glucose levels (mmol/l) under ad libitum feeding conditions were significantly higher (P < 0.01, analysis of variance [ANOVA]) in diabetic mice than in unaffected mice: 27.3 +/- 5.3 for diabetic males (n = 50) and 9.3 +/- 1.2 for unaffected males (n = 50); 13.6 +/- 3.8 for diabetic females (n = 50) and 8.7 +/- 1.1 for unaffected females (n = 50), while corresponding immunoreactive insulin levels in plasma were significantly lower in diabetic mice than in unaffected mice. In vitro insulin secretion was also impaired, even at 4 weeks of age. The 50% survival time for male diabetic mice (305 days) was significantly shorter than that of unaffected counterpart mice but not for diabetic females. Obesity did not occur in diabetic mice. Histological examinations of the pancreas in diabetic mice, from 4 to 35 weeks of age, revealed decreases in the numbers of active beta-cells without insulitis. Morphometry demonstrated specific decreases in immunologically detectable insulin density in islets in diabetic mice, even at 4 weeks of age, without changes of relative islet areas. By linkage analysis, a single locus was identified on the basis of 178 N2 mice [(B6 x C3H/He)F1 x B6 and (B6 x C3H/He)F1 x C3H/He]. This locus, which we named Mody4, was mapped to chromosome 7 in a region 2-8 cM distal to D7Mit189 (logarithm of odds [LOD] score = 15.6 and 10.3).
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: Data curationRole: Formal analysisRole: MethodologyRole: ResourcesRole: ValidationRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                24 August 2017
                2017
                : 12
                : 8
                : e0182828
                Affiliations
                [1 ] Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
                [2 ] Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States of America
                Virginia Commonwealth University Medical Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-7810-9239
                Article
                PONE-D-17-05052
                10.1371/journal.pone.0182828
                5570368
                28837672
                fc67a646-9491-4f1c-b85d-fa693a70b911
                © 2017 Kesherwani et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 February 2017
                : 25 July 2017
                Page count
                Figures: 8, Tables: 0, Pages: 17
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: HL-113281
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: HL-116205
                Award Recipient :
                This work is supported in part by NIH grants HL-113281 and HL-116205 to Paras K. Mishra. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Microarrays
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Next-Generation Sequencing
                Research and analysis methods
                Molecular biology techniques
                Sequencing techniques
                DNA sequencing
                Next-Generation Sequencing
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Next-Generation Sequencing
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Next-Generation Sequencing
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Long non-coding RNAs
                Medicine and Health Sciences
                Cardiology
                Heart Failure
                Custom metadata
                Data are available at GEO website (dataset # GSE66577).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article