53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Granulocyte Colony-Stimulating Factor Effects on Treatment-Resistant Thin Endometrium in Women Undergoing In Vitro Fertilization

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the study was to assess the granulocyte colony-stimulating factor (G-CSF) effects on unresponsive thin (<7 mm) endometrium in women undergoing in vitro fertilization (IVF). We included thirty-seven subjects who had thin unresponsive endometrium on the day of triggering ovulation. These patients also failed to achieve an adequate endometrial thickness in at least one of their previous IVF cycles. In all the subjects at the time of infusion of G-CSF, endometrial thickness was 6,74 ± 1,75 mm, and, after infusion, it increased significantly to 8,42 ± 1,73 mm. When we divided the group into two subgroups according to whether the examined women conceived, we showed that the endometrium expanded significantly from 6,86 ± 1,65 to 8,80 ± 1,14 mm in the first group (who conceived) and from 6,71 ± 1,80 to 8,33 ± 1,85 mm in the second, respectively. There were no significant differences between the two subgroups in respect to the endometrial thickness both before and after G-CSF infusion. The clinical pregnancy rate was 18,9%. We concluded that the infusion of G-CSF leads to the improvement of endometrium thickness after 72 hours.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance.

          In recent years, several investigators have unraveled a previously unrecognized role for G-CSF in the regulation of T cell and dendritic cell functions. The experimental evidence in favor of G-CSF-mediated immune regulation includes the ability to switch T cell cytokine secretion profile to Th2 responses and the promotion of regulatory T cell and tolerogenic dendritic cell differentiation. Interestingly, G-CSF is beneficial in animals for the prevention and/or treatment of immune-mediated diseases, e.g., graft-vs-host disease, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and diabetes, suggesting a potential role in human autoimmune diseases. This review summarizes the growing body of evidence that supports a critical role for G-CSF as a novel mediator of T cell tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome

            Background To evaluate the relationship between endometrial thickness on day of human chorionic gonadotrophin administration (hCG) and pregnancy outcome in a large number of consecutive in vitro fertilization and embryo transfer (IVF-ET) cycles. Methods A retrospective cohort study including all patients who had IVF-ET from January 2003–December 2005 conducted at a tertiary center. Results A total of 2464 cycles were analysed. Pregnancy rate (PR) was 35.8%. PR increased linearly (r = 0.864) from 29.4% among patients with a lining of less than or equal to 6 mm, to 44.4% among patients with a lining of greater than or equal to 17 mm. ROC showed that endometrial thickness is not a good predictor of PR, so a definite cut-off value could not be established (AUC = 0.55). Conclusion There is a positive linear relationship between the endometrial thickness measured on the day of hCG injection and PR, and is independent of other variables. Hence aiming for a thicker endometrium should be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A pilot cohort study of granulocyte colony-stimulating factor in the treatment of unresponsive thin endometrium resistant to standard therapies.

              Is thin endometrium unresponsive to standard treatments expandable by intrauterine perfusion with granulocyte colony-stimulating factor (G-CSF)? This cohort study is supportive of the effectiveness of G-CSF in expanding chronically unresponsive endometria. In a previous small case series, we reported the successful off-label use of G-CSF in four consecutive patients, who had previously failed to expand their endometria beyond 6.9 mm with the use of standard treatments. In a prospective observational cohort pilot study over 18 months, we described 21 consecutive infertile women with endometria <7 mm on the day of hCG administration in their first IVF cycles at our center. All previous cycles using traditional treatments with estradiol, sildenafil citrate (Viagra™) and/or beta-blockers had been unsuccessful. G-CSF (Nupogen™) was administered per intrauterine catheter by slow infusion before noon on the day of hCG administration. If the endometrium had not reached at least a 7-mm within 48h, a second infusion was given following oocyte retrieval. Primary and secondary main outcomes were an increase in endometrial thickness and clinical pregnancy, respectively. Endometrial thickness was assessed by vaginal ultrasound at the most expanded area of the endometrial stripe. This study was uncontrolled, each patient serving as her own control in a prospective evaluation of endometrial thickness. The mean ± SD age of the cohort was 40.5 ± 6.6 years, gravidity was 1.8 ± 2.1 (range 0-7) and parity was 0.4 ± 1.1 (range 0-4); 76.2% of women had, based on age-specific FSH and anti-Müllerian hormone, an objective diagnosis of diminished ovarian reserve and had failed 2.0 ± 2.1 prior IVF cycles elsewhere. With 5.2 ± 1.9 days between G-CSF perfusions and embryo transfers, endometrial thickness increased from 6.4 ± 1.4 to 9.3 ± 2.1 mm (P < 0.001). The Δ in change was 2.9 ± 2.0 mm, and did not vary between conception and non-conception cycles. A 19.1% ongoing clinical pregnancy rate was observed, excluding one ectopic pregnancy. Small sample size (but a highly selected patient population) in an uncontrolled cohort study and in unselected first IVF cycles at our center. This pilot study supports the utility of G-CSF in the treatment of chronically thin endometrium and suggests that such treatment will, in very adversely affected patients, result in low but very reasonable clinical pregnancy rates. This work was supported by the Foundation for Reproductive Medicine, New York, New York, USA, a not-for-profit research foundation and intramural grants from the Center for Human Reproduction (CHR)-New York. N.G. and D.H.B. are members of the board of the Foundation for Reproductive Medicine. N.G. is owner of CHR-New York, where the study was conducted. N.G. and D.H.B. have been recipients of research awards, travel grants and speaker honoraria from various pharmaceutical and medical device companies. None of these companies was, however, in any way associated with the materials and the manuscript presented here. N.G. and D.H.B. are listed as co-inventors on a number of awarded and still pending U.S. patents, none related to the materials presented here. N.G. is on the board of a medically related company, not in any way associated with the data presented here.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                12 February 2014
                : 2014
                : 913235
                Affiliations
                1INVICTA Fertility and Reproductive Center, 00-019 Warszawa, Poland
                2Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-952 Gdańsk, Poland
                3Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Varmia and Masuria, 10-561 Olsztyn, Poland
                4INVICTA Fertility and Reproductive Center, 80-850 Gdańsk, Poland
                5Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
                Author notes
                *Michał Kunicki: mkunicki@ 123456op.pl

                Academic Editor: Irma Virant-Klun

                Author information
                http://orcid.org/0000-0002-0222-7909
                Article
                10.1155/2014/913235
                3944906
                24693540
                fc6c9fe6-a0f1-431d-88d5-77d7d8807477
                Copyright © 2014 Michał Kunicki et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 November 2013
                : 20 December 2013
                Categories
                Clinical Study

                Comments

                Comment on this article