100
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microbial Ecology of the Dark Ocean above, at, and below the Seafloor

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The majority of life on Earth—notably, microbial life—occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean—the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.—has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.

          Related collections

          Most cited references629

          • Record: found
          • Abstract: found
          • Article: not found

          Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB

          A 16S rRNA gene database ( http://greengenes.lbl.gov ) addresses limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria .
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Archaea in coastal marine environments.

              E Delong (1992)
              Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
                Bookmark

                Author and article information

                Journal
                Microbiology and Molecular Biology Reviews
                Microbiol Mol Biol Rev
                American Society for Microbiology
                1092-2172
                1098-5557
                June 2011
                June 2011
                : 75
                : 2
                : 361-422
                Affiliations
                [1 ]Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark
                [2 ]Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
                [3 ]Department of Earth Sciences, University of Southern California, Los Angeles, California 90089
                Article
                10.1128/MMBR.00039-10
                3122624
                21646433
                fc76448e-a959-4ac8-a973-a68e6b3a6da6
                © 2011

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article