16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Survival for lung cancer patients remains dismal and is largely attributed to treatment resistance. To identify novel target genes the modulation of which could modify platinum resistance, we performed a high-throughput RNAi screen and identified Yes-associated protein (YAP1), a transcription coactivator and a known oncogene, as a potential actionable candidate. YAP1 ablation significantly improved sensitivities not only to cisplatin but also to ionizing radiation, both of which are DNA-damaging interventions, in non-small cell lung cancer (NSCLC) cells. Overall YAP1 was expressed in 75% of NSCLC specimens, whereas nuclear YAP1 which is the active form was present in 45% of 124 resected NSCLC. Interestingly, EGFR-mutated or KRAS-mutated NSCLC were associated with higher nuclear YAP1 staining in comparison to EGFR/KRAS wild-type. Relevantly, YAP1 downregulation improved sensitivity to erlotinib, an EGFR inhibitor. A pharmacological inhibitor of YAP1 signaling, verteporfin also synergized with cisplatin, radiation and erlotinib in NSCLC cells by potentiating cisplatin and radiation-related double-stranded breaks and decreasing expression of YAP1 and EGFR. Taken together, our study is the first to indicate the potential role of YAP1 as a common modulator of resistance mechanisms and a potential novel, actionable target that can improve responses to platinum, radiation and EGFR-targeted therapy in lung cancer.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

          The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR.

            Human lung adenocarcinomas with activating mutations in EGFR (epidermal growth factor receptor) often respond to treatment with EGFR tyrosine kinase inhibitors (TKIs), but the magnitude of tumour regression is variable and transient. This heterogeneity in treatment response could result from genetic modifiers that regulate the degree to which tumour cells are dependent on mutant EGFR. Through a pooled RNA interference screen, we show that knockdown of FAS and several components of the NF-κB pathway specifically enhanced cell death induced by the EGFR TKI erlotinib in EGFR-mutant lung cancer cells. Activation of NF-κB through overexpression of c-FLIP or IKK (also known as CFLAR and IKBKB, respectively), or silencing of IκB (also known as NFKBIA), rescued EGFR-mutant lung cancer cells from EGFR TKI treatment. Genetic or pharmacologic inhibition of NF-κB enhanced erlotinib-induced apoptosis in erlotinib-sensitive and erlotinib-resistant EGFR-mutant lung cancer models. Increased expression of the NF-κB inhibitor IκB predicted for improved response and survival in EGFR-mutant lung cancer patients treated with EGFR TKI. These data identify NF-κB as a potential companion drug target, together with EGFR, in EGFR-mutant lung cancers and provide insight into the mechanisms by which tumour cells escape from oncogene dependence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins.

              EGFR and Hippo signaling pathways both control growth and, when dysregulated, contribute to tumorigenesis. We find that EGFR activates the Hippo pathway transcription factor Yorkie and demonstrate that Yorkie is required for the influence of EGFR on cell proliferation in Drosophila. EGFR regulates Yorkie through the influence of its Ras-MAPK branch on the Ajuba LIM protein Jub. Jub is epistatic to EGFR and Ras for Yorkie regulation, Jub is subject to MAPK-dependent phosphorylation, and EGFR-Ras-MAPK signaling enhances Jub binding to the Yorkie kinase Warts and the adaptor protein Salvador. An EGFR-Hippo pathway link is conserved in mammals, as activation of EGFR or RAS activates the Yorkie homolog YAP, and EGFR-RAS-MAPK signaling promotes phosphorylation of the Ajuba family protein WTIP and also enhances WTIP binding to the Warts and Salvador homologs LATS and WW45. Our observations implicate the Hippo pathway in EGFR-mediated tumorigenesis and identify a molecular link between these pathways. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 May 2016
                22 December 2015
                : 7
                : 20
                : 28976-28988
                Affiliations
                1 Department of Oncology, Albert Einstein College of Medicine of Yeshiva University/Montefiore Medical Center, Bronx, NY, USA
                2 Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Center of Medical Imaging and Image-Guided Therapy, Guangzhou, China
                3 Icahn School of Medicine at Mount Sinai, New York, NY, USA
                4 Department of Pathology, Weill Cornell University Medical Center, New York, NY, USA
                5 Department of Biomedical Informatics, Columbia University, New York, NY, USA
                6 Department of Radiation Oncology, Columbia University College of Physicians and Surgeons, New York, NY, USA
                7 Department of Precision Medicine, Oncology Research Unit, Pfizer Inc., Pearl River, NY, USA
                8 Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, USA
                Author notes
                Correspondence to: Haiying Cheng, hcheng@ 123456montefiore.org
                Article
                6721
                10.18632/oncotarget.6721
                5045371
                26716514
                fc7b4109-2844-418e-92b2-bd529f26af25
                Copyright: © 2016 Cheng et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 August 2015
                : 21 November 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                lung cancer,rnai screen,yap1,platinum resistance,radiation
                Oncology & Radiotherapy
                lung cancer, rnai screen, yap1, platinum resistance, radiation

                Comments

                Comment on this article