49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chaperone-mediated autophagy is involved in the execution of ferroptosis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Necroptosis and ferroptosis are two distinct necrotic cell death modalities with no known common molecular mechanisms. Necroptosis is activated by ligands of death receptors such as tumor necrosis factor-α (TNF-α) under caspase-deficient conditions, whereas ferroptosis is mediated by the accumulation of lipid peroxides upon the depletion/or inhibition of glutathione peroxidase 4 (GPX4). The molecular mechanism that mediates the execution of ferroptosis remains unclear. In this study, we identified 2-amino-5-chloro-N,3-dimethylbenzamide (CDDO), a compound known to inhibit heat shock protein 90 (HSP90), as an inhibitor of necroptosis that could also inhibit ferroptosis. We found that HSP90 defined a common regulatory nodal between necroptosis and ferroptosis. We showed that inhibition of HSP90 by CDDO blocked necroptosis by inhibiting the activation of RIPK1 kinase. Furthermore, we showed that the activation of ferroptosis by erastin increased the levels of lysosome-associated membrane protein 2a to promote chaperone-mediated autophagy (CMA), which, in turn, promoted the degradation of GPX4. Importantly, inhibition of CMA stabilized GPX4 and reduced ferroptosis. Our results suggest that activation of CMA is involved in the execution of ferroptosis.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.

          We used synthetic lethal high-throughput screening to interrogate 23,550 compounds for their ability to kill engineered tumorigenic cells but not their isogenic normal cell counterparts. We identified known and novel compounds with genotype-selective activity, including doxorubicin, daunorubicin, mitoxantrone, camptothecin, sangivamycin, echinomycin, bouvardin, NSC146109, and a novel compound that we named erastin. These compounds have increased activity in the presence of hTERT, the SV40 large and small T oncoproteins, the human papillomavirus type 16 (HPV) E6 and E7 oncoproteins, and oncogenic HRAS. We found that overexpressing hTERT and either E7 or LT increased expression of topoisomerase 2alpha and that overexpressing RAS(V12) and ST both increased expression of topoisomerase 1 and sensitized cells to a nonapoptotic cell death process initiated by erastin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synchronized renal tubular cell death involves ferroptosis.

            Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models

              Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington’s disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 04 2019
                : 201819728
                Article
                10.1073/pnas.1819728116
                6386716
                30718432
                fc83c4d0-a614-431a-b542-eb2f8ac0dcd4
                © 2019

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article