77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Noma is a gangrenous disease that leads to severe disfigurement of the face with high morbidity and mortality, but its etiology remains unknown. Young children in developing countries are almost exclusively affected. The purpose of the study was to record and compare bacterial diversity in oral samples from children with or without acute noma or acute necrotizing gingivitis from a defined geographical region in Niger by culture-independent molecular methods.

          Methods and Principal Findings

          Gingival samples from 23 healthy children, nine children with acute necrotizing gingivitis, and 23 children with acute noma (both healthy and diseased oral sites) were amplified using “universal” PCR primers for the 16 S rRNA gene and pooled according to category (noma, healthy, or acute necrotizing gingivitis), gender, and site status (diseased or control site). Seven libraries were generated. A total of 1237 partial 16 S rRNA sequences representing 339 bacterial species or phylotypes at a 98–99% identity level were obtained. Analysis of bacterial composition and frequency showed that diseased (noma or acute necrotizing gingivitis) and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. Large increases in counts of Prevotella intermedia and members of the Peptostreptococcus genus are associated with disease. In contrast, no clear-cut differences were found between noma and non-noma libraries.

          Conclusions

          Similarities between acute necrotizing gingivitis and noma samples support the hypothesis that the disease could evolve from acute necrotizing gingivitis in certain children for reasons still to be elucidated. This study revealed oral microbiological patterns associated with noma and acute necrotizing gingivitis, but no evidence was found for a specific infection-triggering agent.

          Author Summary

          Noma is a devastating gangrenous disease that leads to severe facial disfigurement, but its cause remains unknown. It is associated with high morbidity and mortality and affects almost exclusively young children living in remote areas of developing countries, particularly in Africa. Several factors have been linked to the disease, including malnutrition, immune dysfunction, lack of oral hygiene, and lesions of the mucosal gingival barrier, particularly the presence of acute necrotizing gingivitis, and a potentially non-identified bacterial factor acting as a trigger for the disease. This study assessed the total bacterial diversity present in 69 oral samples of 55 children in Niger with or without acute noma or acute necrotizing gingivitis using culture-independent molecular methods. Analysis of bacterial composition and frequency showed that diseased and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. We failed to identify a causative infectious agent for noma or acute necrotizing gingivitis as the most plausible pathogens for both conditions were present also in sizeable numbers in healthy subjects. Most likely, the disease is initiated by a synergistic combination of several bacterial species, and not a single agent.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          16S ribosomal DNA amplification for phylogenetic study.

          A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

            O. Gascuel (1997)
            We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The general stochastic model of nucleotide substitution.

              DNA sequence evolution through nucleotide substitution may be assimilated to a stationary Markov process. The fundamental equations of the general model, with 12 independent substitution parameters, are used to obtain a formula which corrects the effect of multiple and parallel substitutions on the measure of evolutionary divergence between two homologous sequences. We show that only reversible models, with six independent parameters, allow the calculation of the substitution rates. Simulation experiments on DNA sequence evolution through nucleotide substitution call into question the effectiveness of the general model (and of any other more detailed description); nevertheless, the general model results are slightly superior to any of its particular cases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                March 2012
                6 March 2012
                : 6
                : 3
                : e1556
                Affiliations
                [1 ]Institut für Angewandte Immunologie, Zuchwil, Switzerland
                [2 ]GESNOMA, Unit of Plastic and Reconstructive Surgery, University of Geneva Hospitals, Geneva, Switzerland
                [3 ]Genomic Research Laboratory, University of Geneva Hospitals, Geneva, Switzerland
                [4 ]Department of Periodontology and Oral Pathophysiology, School of Dental Medicine, University of Geneva Faculty of Medicine, Geneva, Switzerland
                [5 ]Clinical Microbiology Laboratory, University of Geneva Hospitals, Geneva, Switzerland
                [6 ]Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
                University of Tennessee, United States of America
                Author notes

                Conceived and designed the experiments: IB. Performed the experiments: IB. Analyzed the data: IB KW. Wrote the paper: IB KW BS DB-M YG AM JS DP.

                Article
                PNTD-D-11-00699
                10.1371/journal.pntd.0001556
                3295795
                22413030
                fc88b6ca-afe3-4f2d-93b6-6f39fc3a4b39
                Bolivar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 July 2011
                : 19 January 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Medicine
                Clinical Genetics
                Clinical Immunology
                Infectious Diseases
                Oral Medicine

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article