22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Setting a disordered password on a photonic memory

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Encryption is a vital tool of information technology protecting our data in the world with ubiquitous computers. While photons are regarded as ideal information carriers, it is a must to implement such data protection on all-optical storage. However, the intrinsic risk of data breaches in existing schemes of photonic memory was never addressed. We theoretically demonstrate the first protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. Compare with a digital key, a continuous disorder encrypts stored light pulses with a rather long key length against brute-force attacks. To address the broadband storage, we also investigate a novel scheme of disordered echo memory with a high fidelity approaching unity. Our results pave novel ways to encrypt different schemes of photonic memory based on quantum optics and raise the security level of photonic information technology.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Observation of coherent optical information storage in an atomic medium using halted light pulses.

          Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A solid state light-matter interface at the single photon level

            , , (2010)
            Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is a decisive milestone for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 10 millions atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid state atomic medium. The state of the light is mapped onto collective atomic excitations on an optical transition and stored for a pre-programmed time up of to 1 mu s before being released in a well defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95% are obtained, which demonstrates the high coherence of the mapping process at the single photon level. In addition, we show experimentally that our interface allows one to store and retrieve light fields in multiple temporal modes. Our results represent the first observation of collective enhancement at the single photon level in a solid and open the way to multimode solid state quantum memories as a promising alternative to atomic gases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Light storage at record bandwidths

                Bookmark

                Author and article information

                Journal
                2016-11-01
                Article
                1611.00136
                fc893ecc-60a0-4cf5-97bd-54ffbf2bda8b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                5 pages and 4 figures
                quant-ph physics.atom-ph

                Quantum physics & Field theory,Atomic & Molecular physics
                Quantum physics & Field theory, Atomic & Molecular physics

                Comments

                Comment on this article