75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Near-infrared spectroscopy: recent advances in infant speech perception and language acquisition research

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Near-Infrared Spectroscopy (NIRS) is a relatively novel and increasingly popular optical imaging technique that has revolutionized brain research in the developmental populations (Villringer and Chance, 1997; Lloyd-Fox et al., 2009; Gervain et al., 2011). After more than a decade of technological development, NIRS has become a reliable, easy-to-use and efficient tool to explore the linguistic and cognitive abilities of neonates and young infants, opening new vistas for the investigation of language acquisition and cognitive development. This Research Topic covers the latest advances in these areas brought about by NIRS imaging. The main focus is to highlight innovative and foundational studies that go beyond methodological issues and advance our theoretical understanding of infant and child development. Contributions from the pioneers of this method are selected, illustrating how NIRS has allowed developmental researchers to ask theoretically relevant questions that more traditional methods couldn't address. The first two contributions, by Fava et al. (2011) and Benavides-Varela et al. (2011), cover general theoretical issues and methodological principles. They provide a critical, but constructive overview of theoretical questions about linguistic and cognitive development that have been asked, outline challenges that the NIRS community still needs to face and offer recommendations for optimal experimental designs and data interpretations practices. These general contributions are followed by a series of empirical papers exploring a key issue in the study of the neural correlates of language learning and development, the nature and origins of the brain specialization for speech and language. While it is well established that in the majority of right-handed adults, language is preferentially processed in the left hemisphere (e.g., Friederici, 2005), the reasons for and the ontogenetic origins of this left lateralization have so far been less well understood, partly because the field lacked a safe, fully non-invasive, participant-friendly brain imaging method with which to probe the infant brain. NIRS has filled this gap, opening up the way for exciting new discoveries about the brain specialization for speech and language in young babies (e.g., Pena et al., 2003; Sato et al., 2012). Five experimental articles in the current volume contribute to this exciting inquiry. May et al. (2011) compare newborn infants' brain responses to the native language, spoken by the mother during pregnancy, and to an unknown language, in an attempt to investigate how prenatal experience with speech might shape the brain specialization for language. Telkemeyer et al. (2011), Arimitsu et al. (2011) as well as Minagawa-Kawai et al. (2011) take a different approach, seeking to identify the acoustic, spectro-temporal properties of the speech signal might underlie brain specialization. In adults, it has been shown that fast-changing sounds or sounds modulated in time preferentially recruit areas in the left hemisphere that are part of the language network, while slowly changing sounds or sounds modulated spectrally tend to engage the right hemisphere (Zatorre et al., 2002; Hickok and Poeppel, 2007). This offers a potential explanation for why most language stimuli, with their fast phoneme and syllable transitions, activate the left hemisphere, with prosody being the only aspect of language that is processed in the right hemisphere. However, adults have extensive experience with language, leaving open the issue of causation. Telkemeyer et al. (2011), Arimitsu et al. (2011), and Minagawa-Kawai et al. (2011) now test these hypotheses on newborns and young infants using different temporally and spectrally modulated tone stimuli, asking whether the observed hemispheric specializations are the causes or the results of lateralized language processing. As an innovative extension of the research on early brain specialization for speech, Sato et al. (2011) investigate whether, and if yes, how this specialization might be different in an atypical population, stuttering children and adults. The last three contributions inquire into more advanced or higher level mechanisms of language processing and comprehension. Homae et al. (2011) used a new method of NIRS data analysis to explore functional connectivity and networks in 3-month-old infants at rest and while they listen to speech stimuli, identifying a large-scale brain network engaged in language processing. Wagner et al. (2011) explore the neural correlates of learning abstract linguistic rules at 7 and at 9 months of life and show important developmental changes signaling infants increased specialization for and attunement to language structure. Tabea Brink et al. (2011) study the brain mechanisms underlying the understanding of empathy in verbal and picture-based stories in pre-school children, an age which is believed to be crucial for the development of emotional and cognitive empathy. It is my hope that these NIRS studies further our understanding of language and cognitive development and bring us closer to bridging the gap between brain, mind and behavior at the very beginning of life. Conflict of interest statement The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of auditory cortex: music and speech.

          We examine the evidence that speech and musical sounds exploit different acoustic cues: speech is highly dependent on rapidly changing broadband sounds, whereas tonal patterns tend to be slower, although small and precise changes in frequency are important. We argue that the auditory cortices in the two hemispheres are relatively specialized, such that temporal resolution is better in left auditory cortical areas and spectral resolution is better in right auditory cortical areas. We propose that cortical asymmetries might have developed as a general solution to the need to optimize processing of the acoustic environment in both temporal and frequency domains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Language and the Newborn Brain: Does Prenatal Language Experience Shape the Neonate Neural Response to Speech?

            Previous research has shown that by the time of birth, the neonate brain responds specially to the native language when compared to acoustically similar non-language stimuli. In the current study, we use near-infrared spectroscopy to ask how prenatal language experience might shape the brain response to language in newborn infants. To do so, we examine the neural response of neonates when listening to familiar versus unfamiliar language, as well as to non language stimuli. Twenty monolingual English-exposed neonates aged 0–3 days were tested. Each infant heard low-pass filtered sentences of forward English (familiar language), forward Tagalog (unfamiliar language), and backward English and Tagalog (non-language). During exposure, neural activation was measured across 12 channels on each hemisphere. Our results indicate a bilateral effect of language familiarity on neonates’ brain response to language. Differential brain activation was seen when neonates listened to forward Tagalog (unfamiliar language) as compared to other types of language stimuli. We interpret these results as evidence that the prenatal experience with the native language gained in utero influences how the newborn brain responds to language across brain regions sensitive to speech processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurophysiological markers of early language acquisition: from syllables to sentences.

              Recently, there have been several reports of the neurophysiological correlates of language acquisition. These indicate that the infant's brain is able to discriminate different phonemes within the first 2 months of life, that knowledge about stress patterns and phonotactic rules is established between 5-12 months, and that phonotactic knowledge begins to interact with lexical-semantic processes between 12-14 months. Electrophysiological markers for lexical-semantic processes indicate that semantic processing of words in picture contexts is present at 14 months and for words in sentential contexts around 30 months. At 32 months, children demonstrate an adult-like electrophysiological response pattern to syntactic violations. The similarities between the brain response patterns observed in children and adults support the view that language develops in a continuous manner.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                15 August 2014
                2014
                : 5
                : 916
                Affiliations
                Laboratoire Psychologie de la Perception, CNRS - Universite Paris Descartes Paris, France
                Author notes

                This article was submitted to Language Sciences, a section of the journal Frontiers in Psychology.

                Edited and reviewed by: Manuel Carreiras, Basque Center on Cognition, Brain and Language, Spain

                Article
                10.3389/fpsyg.2014.00916
                4133647
                fc920583-161a-4e5f-b8d1-546272a5a743
                Copyright © 2014 Gervain.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 July 2014
                : 01 August 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 18, Pages: 2, Words: 1456
                Categories
                Psychology
                Editorial Article

                Clinical Psychology & Psychiatry
                language learning,language developmental,speech perception,brain specialization for language,near-infrared spectroscopy,developmental cognitive neuroscience

                Comments

                Comment on this article