52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Function and regulation of CREB family transcription factors in the nervous system.

            CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p300/CBP proteins: HATs for transcriptional bridges and scaffolds.

              p300/CBP transcriptional co-activator proteins play a central role in co-ordinating and integrating multiple signal-dependent events with the transcription apparatus, allowing the appropriate level of gene activity to occur in response to diverse physiological cues that influence, for example, proliferation, differentiation and apoptosis. p300/CBP activity can be under aberrant control in human disease, particularly in cancer, which may inactivate a p300/CBP tumour-suppressor-like activity. The transcription regulating-properties of p300 and CBP appear to be exerted through multiple mechanisms. They act as protein bridges, thereby connecting different sequence-specific transcription factors to the transcription apparatus. Providing a protein scaffold upon which to build a multicomponent transcriptional regulatory complex is likely to be an important feature of p300/CBP control. Another key property is the presence of histone acetyltransferase (HAT) activity, which endows p300/CBP with the capacity to influence chromatin activity by modulating nucleosomal histones. Other proteins, including the p53 tumour suppressor, are targets for acetylation by p300/CBP. With the current intense level of research activity, p300/CBP will continue to be in the limelight and, we can be confident, yield new and important information on fundamental processes involved in transcriptional control.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2015
                27 August 2015
                27 August 2015
                : 2015
                : 945217
                Affiliations
                1Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
                2Laboratories for CNS Disorder, Learning & Memory, Division of Pharmacology, Central Drug Research Institute, Lucknow 226001, India
                Author notes
                *Koilmani Emmanuvel Rajan: emmanuvel1972@ 123456yahoo.com

                Academic Editor: Francesca Borrelli

                Article
                10.1155/2015/945217
                4564644
                fc949cb9-77ad-48d5-a1a0-eb177d584500
                Copyright © 2015 Koilmani Emmanuvel Rajan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 October 2014
                : 24 March 2015
                : 9 April 2015
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article