60
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species

      research-article
      *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the “warm edges” of species’ ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

          Author Summary

          Climate change is an important threat to the world’s plant and animal species, including species on which humans depend. However, predicting how species will respond to future climate change is very difficult. In this study, I analyze the extinctions caused by the climate change that has already occurred. Numerous studies find that species are shifting their geographic ranges in response to climate change, typically moving to higher elevations and latitudes. These studies also contain valuable data on local extinctions, as they document the loss of populations at the “warm edge” of species’ ranges (lower elevations and latitudes). Here, I use these data to show that recent local extinctions related to climate change have already occurred in hundreds of species around the world. Specifically, among 976 species surveyed, local extinctions occurred in 47%. These extinctions are common across climatic zones, habitats, and groups of organisms but are especially common in tropical regions (which contain most of Earth’s species), in animals (relative to plants), and in freshwater habitats. In summary, this study reveals local extinctions in hundreds of species related to the limited global warming that has already occurred. These extinctions will almost certainly increase as global climate continues to warm in the coming decades.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Synergies among extinction drivers under global change.

          If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and evolution: disentangling environmental and genetic responses.

            Rapid climate change is likely to impose strong selection pressures on traits important for fitness, and therefore, microevolution in response to climate-mediated selection is potentially an important mechanism mitigating negative consequences of climate change. We reviewed the empirical evidence for recent microevolutionary responses to climate change in longitudinal studies emphasizing the following three perspectives emerging from the published data. First, although signatures of climate change are clearly visible in many ecological processes, similar examples of microevolutionary responses in literature are in fact very rare. Second, the quality of evidence for microevolutionary responses to climate change is far from satisfactory as the documented responses are often - if not typically - based on nongenetic data. We reinforce the view that it is as important to make the distinction between genetic (evolutionary) and phenotypic (includes a nongenetic, plastic component) responses clear, as it is to understand the relative roles of plasticity and genetics in adaptation to climate change. Third, in order to illustrate the difficulties and their potential ubiquity in detection of microevolution in response to natural selection, we reviewed the quantitative genetic studies on microevolutionary responses to natural selection in the context of long-term studies of vertebrates. The available evidence points to the overall conclusion that many responses perceived as adaptations to changing environmental conditions could be environmentally induced plastic responses rather than microevolutionary adaptations. Hence, clear-cut evidence indicating a significant role for evolutionary adaptation to ongoing climate warming is conspicuously scarce.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change

              Climate change is a major threat to global biodiversity. A novel integrated framework to assess vulnerability and prioritize research and management action aims to improve our ability to respond to this emerging crisis.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: InvestigationRole: Writing – original draftRole: Writing – review & editing
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                8 December 2016
                December 2016
                8 December 2016
                : 14
                : 12
                : e2001104
                Affiliations
                [001]Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
                University of California-Berkeley, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Article
                pbio.2001104
                10.1371/journal.pbio.2001104
                5147797
                27930674
                fc9eb37e-fb6a-4d9d-a46c-c30ccad1fcfb
                © 2016 John J. Wiens

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 September 2016
                : 3 November 2016
                Page count
                Figures: 3, Tables: 1, Pages: 18
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Conservation Biology
                Species Extinction
                Ecology and Environmental Sciences
                Conservation Science
                Conservation Biology
                Species Extinction
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Processes
                Species Extinction
                Earth Sciences
                Atmospheric Science
                Climatology
                Climate Change
                Earth Sciences
                Hydrology
                Fresh Water
                Biology and Life Sciences
                Plant Science
                Plant Taxonomy
                Biology and Life Sciences
                Taxonomy
                Plant Taxonomy
                Computer and Information Sciences
                Data Management
                Taxonomy
                Plant Taxonomy
                Ecology and Environmental Sciences
                Habitats
                Biology and Life Sciences
                Taxonomy
                Animal Taxonomy
                Computer and Information Sciences
                Data Management
                Taxonomy
                Animal Taxonomy
                Biology and Life Sciences
                Zoology
                Animal Taxonomy
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Biology and Life Sciences
                Ecology
                Ecological Niches
                Ecology and Environmental Sciences
                Ecology
                Ecological Niches
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Life sciences
                Life sciences

                Comments

                Comment on this article