167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira–Hasegawa [SH]-aLRT) provide a compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Considering both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira–Hasegawa tree selection. In general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based methods.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

            A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolution of the early placental mammal radiation using Bayesian phylogenetics.

              Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).
                Bookmark

                Author and article information

                Journal
                Syst Biol
                sysbio
                sysbio
                Systematic Biology
                Oxford University Press
                1063-5157
                1076-836X
                October 2011
                03 May 2011
                03 May 2011
                : 60
                : 5
                : 685-699
                Affiliations
                [1 ]Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
                [2 ]Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
                [3 ]Méthodes et algorithmes pour la Bioinformatique, LIRMM, CNRS—Université Montpellier 2, Montpellier, France
                Author notes
                [* ]Correspondence to be sent to: Maria Anisimova, Department of Computer Science, ETH Zürich, Universitaetsstrasse 6, 8092 Zürich, Switzerland; E-mail: maria.anisimova@ 123456inf.ethz.ch

                Associate Editor: Tiffani Williams

                Article
                10.1093/sysbio/syr041
                3158332
                21540409
                fca102e4-719c-430d-a736-0e0619c5ef86
                © The Author(s) 2011. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2010
                : 2 September 2010
                : 1 March 2011
                Categories
                Regular Articles

                Animal science & Zoology
                evolution,branch support methods,alrt,accuracy,sh-alrt,model violation,phylogenetic inference,power

                Comments

                Comment on this article