6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synthesis, DFT investigations, antioxidant, antibacterial activity and SAR-study of novel thiophene-2-carboxamide derivatives

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic strategy for the synthesis of thiophene 2-carboxamide derivatives substituted with hydroxyl, methyl and amino groups at position-3 was proposed. The strategy includes the cyclization of the precursor ethyl 2-arylazo-3-mercapto-3-(phenylamino)acrylate derivatives, 2-acetyl-2-arylazo-thioacetanilide derivatives and N-aryl-2-cyano-3-mercapto-3-(phenylamino)acrylamide derivatives with N-(4-acetylphenyl)-2-chloroacetamide in alcoholic sodium ethoxide. IR, 1H NMR, and mass spectroscopic analyses were used to characterize the synthesized derivatives. In addition, molecular, electronic properties of the synthesized products were studied by the density functional theory (DFT) where they exhibited close HOMO–LUMO energy gap (ΔE H-L) in which the amino derivatives 7a-c have the highest while the methyl derivatives 5a-c were the lowest. Using the ABTS method, the antioxidant properties of the produced compounds were evaluated, where amino thiophene-2-carboxamide 7a exhibit significant inhibition activity 62.0% compared to ascorbic acid The antibacterial activity against two pathogenic Gram-positive bacteria ( Staphylococcus aureus and Bacillus subtilis) and two of pathogenic Gram-negative bacteria ( Escherichia coli and Pseudomonas aeruginosa) revealed that 7b records the highest activity index compared to ampicillin 83.3, 82.6, 64.0, 86.9%, respectively. Furthermore, the thiophene-2-carboxamide derivatives were docked with five different proteins with the use molecular docking tools and the results explained interactions between amino acid residue of enzyme and compounds. Compounds 3b and 3c showed the highest binding score with 2AS1 protein.

          Graphical Abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13065-023-00917-2.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

            • Record: found
            • Abstract: not found
            • Article: not found

            Density-functional thermochemistry. III. The role of exact exchange

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

              (2022)
              Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.

                Author and article information

                Contributors
                hebama@mans.edu.eg
                Journal
                BMC Chem
                BMC Chem
                BMC Chemistry
                Springer International Publishing (Cham )
                2661-801X
                20 February 2023
                20 February 2023
                December 2023
                : 17
                : 1
                : 6
                Affiliations
                GRID grid.10251.37, ISNI 0000000103426662, Department of Chemistry, Faculty of Science, , Mansoura University, ; Mansoura, 35516 Egypt
                Article
                917
                10.1186/s13065-023-00917-2
                9940361
                36803621
                fca5a04f-87c2-457f-93c1-92f9f7797da6
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 23 August 2022
                : 3 February 2023
                Funding
                Funded by: Mansoura University
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                2-chloroacetamide,thiophene-2-carboxamide,antioxidant,dft calculations,molecular docking

                Comments

                Comment on this article

                Related Documents Log