75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          CO and FT orthologs, belonging to the BBX and PEBP family, respectively, have important and conserved roles in the photoperiod regulation of flowering time in plants. Soybean genome experienced at least three rounds of whole genome duplications (WGDs), which resulted in multiple copies of about 75% of genes. Subsequent subfunctionalization is the main fate for paralogous gene pairs during the evolutionary process.

          Results

          The phylogenic relationships revealed that CO orthologs were widespread in the plant kingdom while FT orthologs were present only in angiosperms. Twenty-eight CO homologous genes and twenty-four FT homologous genes were gained in the soybean genome. Based on the collinear relationship, the soybean ancestral CO ortholog experienced three WGD events, but only two paralogous gene pairs ( GmCOL1/ 2 and GmCOL5/ 13) survived in the modern soybean. The paralogous gene pairs, GmCOL1/ 2 or GmCOL5/ 13, showed similar expression patterns in pair but different between pairs, indicating that they functionally diverged. GmFTL1 to 7 were derived from the same ancestor prior to the whole genome triplication (WGT) event, and after the Legume WGD event the ancestor diverged into two branches, GmFTL3/ 5/ 7 and GmFTL1/ 2/ 4/ 6. GmFTL7 were truncated in the N-terminus compared to other FT-lineage genes, but ubiquitously expressed. Expressions of GmFTL1 to 6 were higher in leaves at the flowering stage than that at the seedling stage. GmFTL3 was expressed at the highest level in all tissues except roots at the seedling stage, and its circadian pattern was different from the other five ones. The transcript of GmFTL6 was highly accumulated in seedling roots. The circadian rhythms of GmCOL5/ 13 and GmFT1/ 2/ 4/ 5/ 6 were synchronized in a day, demonstrating the complicate relationship of CO- FT regulons in soybean leaves. Over-expression of GmCOL2 did not rescue the flowering phenotype of the Arabidopsis co mutant. However, ectopic expression of GmCOL5 did rescue the co mutant phenotype. All GmFTL1 to 6 showed flower-promoting activities in Arabidopsis.

          Conclusions

          After three recent rounds of whole genome duplications in the soybean, the paralogous genes of CO-FT regulons showed subfunctionalization through expression divergence. Then, only GmCOL5/13 kept flowering-promoting activities, while GmFTL1 to 6 contributed to flowering control. Additionally, GmCOL5/ 13 and GmFT1/ 2/3/ 4/ 5/ 6 showed similar circadian expression profiles. Therefore, our results suggested that GmCOL5/ 13 and GmFT1/ 2/3/ 4/ 5/ 6 formed the complicate CO-FT regulons in the photoperiod regulation of flowering time in soybean.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS.

          A major quantitative trait locus (QTL) controlling response to photoperiod, Hd1, was identified by means of a map-based cloning strategy. High-resolution mapping using 1505 segregants enabled us to define a genomic region of approximately 12 kb as a candidate for Hd1. Further analysis revealed that the Hd1 QTL corresponds to a gene that is a homolog of CONSTANS in Arabidopsis. Sequencing analysis revealed a 43-bp deletion in the first exon of the photoperiod sensitivity 1 (se1) mutant HS66 and a 433-bp insertion in the intron in mutant HS110. Se1 is allelic to the Hd1 QTL, as determined by analysis of two se1 mutants, HS66 and HS110. Genetic complementation analysis proved the function of the candidate gene. The amount of Hd1 mRNA was not greatly affected by a change in length of the photoperiod. We suggest that Hd1 functions in the promotion of heading under short-day conditions and in inhibition under long-day conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene duplication and evolutionary novelty in plants.

            Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.

              Heading date 3a (Hd3a) has been detected as a heading-date-related quantitative trait locus in a cross between rice cultivars Nipponbare and Kasalath. A previous study revealed that the Kasalath allele of Hd3a promotes heading under short-day (SD) conditions. High-resolution linkage mapping located the Hd3a locus in a approximately 20-kb genomic region. In this region, we found a candidate gene that shows high similarity to the FLOWERING LOCUS T (FT) gene, which promotes flowering in Arabidopsis: Introduction of the gene caused an early-heading phenotype in rice. The transcript levels of Hd3a were increased under SD conditions. The rice Heading date 1 (Hd1) gene, a homolog of CONSTANS (CO), has been shown to promote heading under SD conditions. By expression analysis, we showed that the amount of Hd3a mRNA is up-regulated by Hd1 under SD conditions, suggesting that Hd3a promotes heading under the control of Hd1. These results indicate that Hd3a encodes a protein closely related to Arabidopsis FT and that the function and regulatory relationship with Hd1 and CO, respectively, of Hd3a and FT are conserved between rice (an SD plant) and Arabidopsis (a long-day plant).
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2014
                7 January 2014
                : 14
                : 9
                Affiliations
                [1 ]MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
                [2 ]Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
                [3 ]CAS Key Lab of Biofuels, Shandong Provincial Key Lab of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
                Article
                1471-2229-14-9
                10.1186/1471-2229-14-9
                3890618
                24397545
                fca943e4-a304-4e3b-9e25-40e7cdff05a7
                Copyright © 2014 Fan et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2013
                : 25 November 2013
                Categories
                Research Article

                Plant science & Botany
                functional divergence,soybean,flowering locus t,paralog,constans,ortholog
                Plant science & Botany
                functional divergence, soybean, flowering locus t, paralog, constans, ortholog

                Comments

                Comment on this article