25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions among genomic loci have often been overlooked in genome-wide association studies, revealing the combinatorial effects of variants on phenotype or disease manifestation. Unexplained genetic variance, interactions among causal genes of small effects, and biological pathways could be identified using a network biology approach. The main objective of this study was to determine the genome-wide epistatic variants affecting feed efficiency traits [feed conversion ratio (FCR) and residual feed intake (RFI)] based on weighted interaction SNP hub (WISH-R) method. Herein, we detected highly interconnected epistatic SNP modules, pathways, and potential biomarkers for the FCR and RFI in Duroc and Landrace purebreds considering the whole population, and separately for low and high feed efficient groups. Highly interacting SNP modules in Duroc (1,247 SNPs) and Landrace (1,215 SNPs) across the population and for low feed efficient (Duroc—80 SNPs, Landrace—146 SNPs) and high feed efficient group (Duroc—198 SNPs, Landrace—232 SNPs) for FCR and RFI were identified. Gene and pathway analyses identified ABL1, MAP3K4, MAP3K5, SEMA6A, KITLG, and KAT2B from chromosomes 1, 2, 5, and 13 underlying ErbB, Ras, Rap1, thyroid hormone, axon guidance pathways in Duroc. GABBR2, GNA12, and PRKCG genes from chromosomes 1, 3, and 6 pointed towards thyroid hormone, cGMP-PKG and cAMP pathways in Landrace. From Duroc low feed efficient group, the TPK1 gene was found involved with thiamine metabolism, whereas PARD6G, DLG2, CRB1 were involved with the hippo signaling pathway in high feed efficient group. PLOD1 and SETD7 genes were involved with lysine degradation in low feed efficient group in Landrace, while high feed efficient group pointed to genes underpinning valine, leucine, isoleucine degradation, and fatty acid elongation. Some SNPs and genes identified are known for their association with feed efficiency, others are novel and potentially provide new avenues for further research. Further validation of epistatic SNPs and genes identified here in a larger cohort would help to establish a framework for modelling epistatic variance in future methods of genomic prediction, increasing the accuracy of estimated genetic merit for FE and helping the pig breeding industry.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments

          g:Profiler (http://biit.cs.ut.ee/gprofiler/) is a public web server for characterising and manipulating gene lists resulting from mining high-throughput genomic data. g:Profiler has a simple, user-friendly web interface with powerful visualisation for capturing Gene Ontology (GO), pathway, or transcription factor binding site enrichments down to individual gene levels. Besides standard multiple testing corrections, a new improved method for estimating the true effect of multiple testing over complex structures like GO has been introduced. Interpreting ranked gene lists is supported from the same interface with very efficient algorithms. Such ordered lists may arise when studying the most significantly affected genes from high-throughput data or genes co-expressed with the query gene. Other important aspects of practical data analysis are supported by modules tightly integrated with g:Profiler. These are: g:Convert for converting between different database identifiers; g:Orth for finding orthologous genes from other species; and g:Sorter for searching a large body of public gene expression data for co-expression. g:Profiler supports 31 different species, and underlying data is updated regularly from sources like the Ensembl database. Bioinformatics communities wishing to integrate with g:Profiler can use alternative simple textual outputs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

            Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. DOI: http://dx.doi.org/10.7554/eLife.06328.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer.

              The phosphatidylinositol-3-kinase (PI3-K)/protein kinase B (AKT) pathway is associated with all three major radiation resistance mechanisms: intrinsic radiosensitivity, tumor cell proliferation, and hypoxia. In cell signaling cascades, the PI3-K/AKT signaling pathway is a key regulator of normal and cancerous growth and cell fate decisions by processes such as proliferation, invasion, apoptosis, and induction of hypoxia-related proteins. Activation of this pathway can be the result of stimulation of receptor tyrosine kinases such as epidermal growth factor receptor or vascular endothelial growth factor receptor or from mutations or amplification of PI3-K or AKT itself which are frequently found in non-small cell lung cancer (NSCLC). Furthermore, several treatment modalities such as radiotherapy can stimulate this survival pathway. Monitoring and manipulation of this signal transduction pathway may have important implications for the management of NSCLC. Strong and independent associations were found between expression of activated AKT (pAKT) and treatment outcome in clinical trials. Direct targeting and inhibition of this pathway may increase radiosensitivity by antagonizing the radiation induced cellular defense mechanisms especially in tumors that have activated the PI3-K/AKT cascade. To successfully implement these treatments in daily practice, there is a need for molecular predictors of sensitivity to inhibitors of PI3-K/AKT activation. In conclusion, the PI3-K/AKT pathway plays a crucial role in cellular defense mechanisms. Therefore, quantification of the activation status is a potential parameter for predicting treatment outcome. More importantly, specific targeting of this pathway in combination with radiotherapy or chemotherapy may enhance tumor control in NSCLC by antagonizing cellular defense in response to treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                28 February 2020
                2020
                : 11
                : 121
                Affiliations
                [1] Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark , Kongens Lyngby, Denmark
                Author notes

                Edited by: Luis Varona, University of Zaragoza, Spain

                Reviewed by: Roberta Davoli, University of Bologna, Italy; Shu-Hong Zhao, Huazhong Agricultural University, China

                *Correspondence: Haja N. Kadarmideen, hajak@ 123456dtu.dk

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2020.00121
                7058701
                32184802
                fcc2521a-0bd2-45d5-a2c8-6b0fd89102ca
                Copyright © 2020 Banerjee, Carmelo and Kadarmideen

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 September 2019
                : 31 January 2020
                Page count
                Figures: 7, Tables: 2, Equations: 1, References: 62, Pages: 13, Words: 6199
                Funding
                Funded by: Danmarks Frie Forskningsfond 10.13039/501100011958
                Categories
                Genetics
                Original Research

                Genetics
                epistasis,wish,wgcna,feed efficiency,pigs
                Genetics
                epistasis, wish, wgcna, feed efficiency, pigs

                Comments

                Comment on this article