26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions.

      Antonie Van Leeuwenhoek
      Adenosine Diphosphate, metabolism, Adenosine Monophosphate, Adenosine Triphosphate, biosynthesis, Aerobiosis, Bacillus, growth & development, Energy Metabolism, Exopeptidases, Hydrogen-Ion Concentration, Intracellular Fluid, Membrane Potentials, Peptide Hydrolases, Phosphates, Phosphorylation, Protons

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The magnitude of the proton motive force (delta p) and its constituents, the electrical (delta psi) and chemical potential (-Z delta pH), were established for chemostat cultures of a protease-producing, relaxed (rel-) variant and a not protease-producing, stringent (rel+) variant of an industrial strain of Bacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of delta p with the specific growth rate mu was found. The calculated intracellular pH (pHin) was not constant but inversely related to mu. This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with mu for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low mu and an increased value at higher mu. For both limitations, the ATP/ADP ratio was directly related to mu. The phosphorylation potential (delta G'p) was invariant with mu. From the values for delta G'p and delta p, a variable -->H+/ATP-stoichiometry was inferred: -->H+/ATP = 1.83 +/- 0.52 mu, so that at a given -->H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for mu = 0 to mu max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of delta G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing mu are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible mu with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.

          Related collections

          Author and article information

          Comments

          Comment on this article