5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An inhibitor of spleen tyrosine kinase suppresses experimental crescentic glomerulonephritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-selective inhibitors of spleen tyrosine kinase (SYK) efficiently suppress disease in T cell-dependent models of crescentic glomerulonephritis. However, the therapeutic potential of selective SYK inhibitors in this disease has not been established. In addition, we lack knowledge regarding SYK expression in non-myeloid cells in glomerulonephritis. We addressed these two issues in a rat model of nephrotoxic serum nephritis (NTN) using a SYK inhibitor, GS-492429. Disease was induced in Sprague-Dawley rats (Study 1) or Wistar-Kyoto (WKY) rats (Study 2) by immunization with sheep IgG and administration of sheep anti-rat nephrotoxic serum. Animals were untreated or received GS-492429 (30 mg/kg/bid) or vehicle treatment from 2 h before nephrotoxic serum injection until being killed 3 or 24 h later (Study 1) or 14 days later (Study 2). Two-colour confocal microscopy found that SYK expression in NTN kidney was restricted to myeloid cells and platelets, with no evidence of SYK expression by T cells, mesangial cells, podocytes or tubular epithelial cells. In Study 1, GS-492429 treatment significantly reduced glomerular neutrophil and macrophage infiltration, with protection from glomerular thrombosis and proteinuria. In Study 2, GS-492429 treatment reduced glomerular crescent formation by 70% on day 14 NTN in conjunction with reduced glomerular thrombosis, glomerulosclerosis and tubular damage. This was accompanied by a marked reduction in markers of inflammation (CCL2, TNF-α, NOS2, MMP-12). Importantly, the protective effects of GS-492429 were independent of T cell infiltration and activation and independent of JAK/STAT3 signalling. In conclusion, this study demonstrates that a SYK inhibitor can suppress the development of crescentic glomerulonephritis through effects upon myeloid cells and platelets.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.

          Macrophages perform both injury-inducing and repair-promoting tasks in different models of inflammation, leading to a model of macrophage function in which distinct patterns of activation have been proposed. We investigated macrophage function mechanistically in a reversible model of liver injury in which the injury and recovery phases are distinct. Carbon tetrachloride---induced liver fibrosis revealed scar-associated macrophages that persisted throughout recovery. A transgenic mouse (CD11b-DTR) was generated in which macrophages could be selectively depleted. Macrophage depletion when liver fibrosis was advanced resulted in reduced scarring and fewer myofibroblasts. Macrophage depletion during recovery, by contrast, led to a failure of matrix degradation. These data provide the first clear evidence that functionally distinct subpopulations of macrophages exist in the same tissue and that these macrophages play critical roles in both the injury and recovery phases of inflammatory scarring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.

            Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation.

              Recent compelling evidence has lead to renewed interest in the role of antibodies and immune complexes in the pathogenesis of several autoimmune disorders, such as rheumatoid arthritis. These immune complexes, consisting of autoantibodies to self-antigens, can mediate inflammatory responses largely through binding and activating the immunoglobulin Fc receptors (FcRs). Using cell-based structure activity relationships with cultured human mast cells, we have identified the small molecule R406 [N4-(2,2-dimethyl-3-oxo-4H-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine] as a potent inhibitor of immunoglobulin E (IgE)- and IgG-mediated activation of Fc receptor signaling (EC(50) for degranulation = 56-64 nM). Here we show that the primary target for R406 is the spleen tyrosine kinase (Syk), which plays a key role in the signaling of activating Fc receptors and the B-cell receptor (BCR). R406 inhibited phosphorylation of Syk substrate linker for activation of T cells in mast cells and B-cell linker protein/SLP65 in B cells. R406 bound to the ATP binding pocket of Syk and inhibited its kinase activity as an ATP-competitive inhibitor (K(i) = 30 nM). Furthermore, R406 blocked Syk-dependent FcR-mediated activation of monocytes/macrophages and neutrophils and BCR-mediated activation of B lymphocytes. R406 was selective as assessed using a large panel of Syk-independent cell-based assays representing both specific and general signaling pathways. Consistent with Syk inhibition, oral administration of R406 to mice reduced immune complex-mediated inflammation in a reverse-passive Arthus reaction and two antibody-induced arthritis models. Finally, we report a first-inhuman study showing that R406 is orally bioavailable, achieving exposures capable of inhibiting Syk-dependent IgE-mediated basophil activation. Collectively, the results show R406 potential for modulating Syk activity in human disease.
                Bookmark

                Author and article information

                Journal
                Int J Immunopathol Pharmacol
                Int J Immunopathol Pharmacol
                IJI
                spiji
                International Journal of Immunopathology and Pharmacology
                SAGE Publications (Sage UK: London, England )
                0394-6320
                2058-7384
                20 June 2018
                2018
                : 32
                : 2058738418783404
                Affiliations
                [1 ]Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
                [2 ]Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
                [3 ]Gilead Sciences, Foster City, CA, USA
                Author notes
                [*]David J Nikolic-Paterson, Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia. Email: david.nikolic-paterson@ 123456monash.edu
                Author information
                https://orcid.org/0000-0001-5734-2931
                Article
                10.1177_2058738418783404
                10.1177/2058738418783404
                6024518
                29923438
                fcd15fc1-2fa9-40d3-bfee-c3fe2d2e030d
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 18 February 2018
                : 22 May 2018
                Funding
                Funded by: National Health and Medical Research Council, FundRef https://doi.org/10.13039/501100000925;
                Award ID: 1002079
                Funded by: Gilead Sciences, FundRef https://doi.org/10.13039/100005564;
                Categories
                Original Research Article
                Custom metadata
                January-December 2018

                crescent,glomerulonephritis,macrophage,stat3,syk,t cell
                crescent, glomerulonephritis, macrophage, stat3, syk, t cell

                Comments

                Comment on this article