40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cDNA for human beta-arrestin-1 was cloned by polymerase chain reaction (PCR) and identified based on its remarkably high amino acid identity (98.6%) with the bovine sequence. Two alternatively spliced isoforms of human beta-arrestin-1, differing only in the presence or absence of 24 base pairs/8 amino acids within the sequence, were identified and called beta-arrestin-1A and beta-arrestin-1B, respectively. Both isoforms were found in all tissues tested. Southern blot analysis revealed the existence of a single gene for beta-arrestin-1, suggesting that the two isoforms are generated by alternative mRNA splicing. The possible presence of similar isoforms was investigated for the other members of the arrestin/beta-arrestin gene family by PCR. Two isoforms of arrestin were revealed in bovine peripheral blood leukocytes. The expression of beta-arrestin-1 was studied in several human tissues and cell types. High levels of beta-arrestin-1 mRNA and immunoreactivity were found in peripheral blood leukocytes. The possible regulation of the expression of beta-arrestin-1 was also investigated. Our work documents for the first time that the expression of beta-arrestin-1 is modulated by intracellular cAMP. Using two cell types, human endothelial cells and smooth muscle cells, we found that 6-8-h treatments with the cAMP-inducing agents cholera toxin, forskolin, iloprost, and isoproterenol raised beta-arrestin-1 mRNA by 2-4-fold. Forskolin preferentially increased beta-arrestin-1A expression in smooth muscle cells, as assessed by PCR. beta-Arrestin-1 immunoreactivity was 2-3-fold higher in smooth muscle cells exposed to forskolin for 8 h, compared with untreated controls. We conclude that (i) the finding of alternatively spliced isoforms of beta-arrestin-1 and arrestin documents a novel mechanism to generate diversity within the arrestin/beta-arrestin gene family; (ii) the abundant expression of beta-arrestin-1 in peripheral blood leukocytes further supports our previous suggestion of a major role for the beta ARK/beta-arrestin system in regulating receptor-mediated immune functions; (iii) the increased expression of beta-arrestin-1 by cAMP suggests a new mechanism for the regulation of receptor-mediated responses.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          May 5 1993
          : 268
          : 13
          Affiliations
          [1 ] Consorzio Mario Negri Sud, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy.
          Article
          10.1016/S0021-9258(18)98412-7
          8486659
          fcd7f17e-3209-413f-9c94-3af3de5641bc
          History

          Comments

          Comment on this article