162
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.

          Methodology and Principal Findings

          Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.

          Conclusions

          We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

          The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of autophagy in cancer development and response to therapy.

            Autophagy is a process in which subcellular membranes undergo dynamic morphological changes that lead to the degradation of cellular proteins and cytoplasmic organelles. This process is an important cellular response to stress or starvation. Many studies have shed light on the importance of autophagy in cancer, but it is still unclear whether autophagy suppresses tumorigenesis or provides cancer cells with a rescue mechanism under unfavourable conditions. What is the present state of our knowledge about the role of autophagy in cancer development, and in response to therapy? And how can the autophagic process be manipulated to improve anticancer therapeutics?
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.

              W MacNee, , B Celli (2004)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                2 October 2008
                : 3
                : 10
                : e3316
                Affiliations
                [1 ]Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [2 ]Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [3 ]Center for Biologic Imaging, Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [4 ]Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                [5 ]Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
                University of Birmingham, United Kingdom
                Author notes

                Conceived and designed the experiments: ZHC HPK AMKC. Performed the experiments: ZHC HPK SJL KN JL YZ. Analyzed the data: SWR AMKC. Contributed reagents/materials/analysis tools: FS CFB DS RD RJL MJS SAY JMP JL YZ. Wrote the paper: ZHC SWR.

                Article
                08-PONE-RA-04521R1
                10.1371/journal.pone.0003316
                2552992
                18830406
                fce7b0c8-1533-4edc-bcaf-afb44e9b50d9
                Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 April 2008
                : 12 September 2008
                Page count
                Pages: 13
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Cell Biology/Cellular Death and Stress Responses
                Respiratory Medicine/COPD and Allied Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article