16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating the effects of dexamethasone on blood-brain barrier permeability and inflammatory response following focused ultrasound and microbubble exposure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale: Clinical trials are currently underway to test the safety and efficacy of delivering therapeutic agents across the blood-brain barrier (BBB) using focused ultrasound and microbubbles (FUS+MBs). While acoustic feedback control strategies have largely minimized the risk of overt tissue damage, transient induction of inflammatory processes have been observed following sonication in preclinical studies. The goal of this work was to explore the potential of post-sonication dexamethasone (DEX) administration as a means to mitigate treatment risk. Vascular permeability, inflammatory protein expression, blood vessel growth, and astrocyte activation were assessed.

          Methods: A single-element focused transducer (transmit frequency = 580 kHz) and Definity TM microbubbles were used to increase BBB permeability unilaterally in the dorsal hippocampi of adult male rats. Sonicating pressure was calibrated based on ultraharmonic emissions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively assess BBB permeability at 15 min (baseline) and 2 hrs following sonication. DEX was administered following baseline imaging and at 24 hrs post-FUS+MB exposure. Expression of key inflammatory proteins were assessed at 2 days, and astrocyte activation and blood vessel growth were assessed at 10 days post-FUS+MB exposure.

          Results: Compared to saline-treated control animals, DEX administration expedited the restoration of BBB integrity at 2 hrs, and significantly limited the production of key inflammation-related proteins at 2 days, following sonication. Indications of FUS+MB-induced astrocyte activation and vascular growth were diminished at 10 days in DEX-treated animals, compared to controls.

          Conclusions: These results suggest that DEX provides a means of modulating the duration of BBB permeability enhancement and may reduce the risk of inflammation-induced tissue damage, increasing the safety profile of this drug-delivery strategy. This effect may be especially relevant in scenarios for which the goal of treatment is to restore or preserve neural function and multiple sonications are required.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical trial of blood-brain barrier disruption by pulsed ultrasound.

          The blood-brain barrier (BBB) limits the delivery of systemically administered drugs to the brain. Methods to circumvent the BBB have been developed, but none are used in standard clinical practice. The lack of adoption of existing methods is due to procedural invasiveness, serious adverse effects, and the complications associated with performing such techniques coincident with repeated drug administration, which is customary in chemotherapeutic protocols. Pulsed ultrasound, a method for disrupting the BBB, was shown to effectively increase drug concentrations and to slow tumor growth in preclinical studies. We now report the interim results of an ultrasound dose-escalating phase 1/2a clinical trial using an implantable ultrasound device system, SonoCloud, before treatment with carboplatin in patients with recurrent glioblastoma (GBM). The BBB of each patient was disrupted monthly using pulsed ultrasound in combination with systemically injected microbubbles. Contrast-enhanced magnetic resonance imaging (MRI) indicated that the BBB was disrupted at acoustic pressure levels up to 1.1 megapascals without detectable adverse effects on radiologic (MRI) or clinical examination. Our preliminary findings indicate that repeated opening of the BBB using our pulsed ultrasound system, in combination with systemic microbubble injection, is safe and well tolerated in patients with recurrent GBM and has the potential to optimize chemotherapy delivery in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GFAP and astrogliosis.

            One of the most remarkable characteristics of astrocytes is their vigorous response to diverse neurologic insults, a feature that is well conserved across a variety of different species. The astroglial response occurs rapidly and can be detected within one hour of a focal mechanical trauma (Mucke et al., 1991). Prominent reactive astrogliosis is seen; in AIDS dementia; a variety of other viral infections; prion associated spongiform encephalopathies; inflammatory demyelinating diseases; acute traumatic brain injury; neurodegenerative diseases such as Alzheimer's disease. The prominence of astroglial reactions in various diseases, the rapidity of the astroglial response and the evolutionary conservation of reactive astrogliosis indicate that reactive astrocytes fulfill important functions of the central nervous system (CNS). Yet, the exact role reactive astrocytes play in the injured CNS has so far remained elusive. This chapter summaries the various experimental models and diseases that exhibit astrogliosis and increase in glial fibrillary acidic protein (GFAP). Recent in vitro studies to inhibit GFAP synthesis are also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound

              MR-guided focused ultrasound (MRgFUS) is an emerging technology that can accurately and transiently permeabilize the blood-brain barrier (BBB) for targeted drug delivery to the central nervous system. We conducted a single-arm, first-in-human trial to investigate the safety and feasibility of MRgFUS-induced BBB opening in eloquent primary motor cortex in four volunteers with amyotrophic lateral sclerosis (ALS). Here, we show successful BBB opening using MRgFUS as demonstrated by gadolinium leakage at the target site immediately after sonication in all subjects, which normalized 24 hours later. The procedure was well-tolerated with no serious clinical, radiologic or electroencephalographic adverse events. This study demonstrates that non-invasive BBB permeabilization over the motor cortex using MRgFUS is safe, feasible, and reversible in ALS subjects. In future, MRgFUS can be coupled with promising therapeutics providing a targeted delivery platform in ALS.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                1 January 2020
                : 10
                : 4
                : 1604-1618
                Affiliations
                [1 ]Physical Science Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
                [2 ]Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
                [3 ]Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
                Author notes
                ✉ Corresponding author: dmcmahon@ 123456sri.utoronto.ca

                Competing Interests: KH is the founder of FUS Instruments, from which he receives non-study related financial support. DM and WO declare no competing financial interests. Authors declare no other financial or non-financial interests.

                Article
                thnov10p1604
                10.7150/thno.40908
                6993222
                32042325
                fce99450-4d1c-4e94-a41a-74925b6c39f4
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 4 October 2019
                : 4 November 2019
                Categories
                Research Paper

                Molecular medicine
                blood-brain barrier,dexamethasone,dynamic contrast-enhanced magnetic resonance imaging,inflammation,focused ultrasound

                Comments

                Comment on this article