13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NF-κB p50 facilitates neutrophil accumulation during LPS-induced pulmonary inflammation

      research-article
        1 , , 1 , 1
      BMC Immunology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transcription factors have distinct functions in regulating immune responses. During Escherichia coli pneumonia, deficiency of NF-κB p50 increases gene expression and neutrophil recruitment, suggesting that p50 normally limits these innate immune responses. p50-deficient mice were used to determine how p50 regulates responses to a simpler, non-viable bacterial stimulus in the lungs, E. coli lipopolysaccharide (LPS).

          Results

          In contrast to previous results with living E. coli, neutrophil accumulation elicited by E. coli LPS in the lungs was decreased by p50 deficiency, to approximately 30% of wild type levels. Heat-killed E. coli induced neutrophil accumulation which was not decreased by p50 deficiency, demonstrating that bacterial growth and metabolism were not responsible for the different responses to bacteria and LPS. p50 deficiency increased the LPS-induced expression of κB-regulated genes essential to neutrophil recruitment, including KC, MIP-2, ICAM-1, and TNF-α suggesting that p50 normally limited this gene expression and that decreased neutrophil recruitment did not result from insufficient expression of these genes. Neutrophils were responsive to the chemokine KC in the peripheral blood of p50-deficient mice with or without LPS-induced pulmonary inflammation. Interleukin-6 (IL-6), previously demonstrated to decrease LPS-induced neutrophil recruitment in the lungs, was increased by p50 deficiency, but LPS-induced neutrophil recruitment was decreased by p50 deficiency even in IL-6 deficient mice.

          Conclusion

          p50 makes essential contributions to neutrophil accumulation elicited by LPS in the lungs. This p50-dependent pathway for neutrophil accumulation can be overcome by bacterial products other than LPS and does not require IL-6.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1.

          Homodimers of the NF-kappa B p50 subunit are transcriptionally repressive in cells, whereas they can promote transcription in vitro, suggesting that their endogenous effects are mediated by association with other factors. We now demonstrate that transcriptionally inactive nuclear NF-kappaB in resting cells consists of homodimers of either p65 or p50 complexed with the histone deacetylase HDAC-1. Only the p50-HDAC-1 complexes bind to DNA and suppress NF-kappa B-dependent gene expression in unstimulated cells. Appropriate stimulation causes nuclear localization of NF-kappa B complexes containing phosphorylated p65 that associates with CBP and displaces the p50-HDAC-1 complexes. Our results demonstrate that phosphorylation of p65 determines whether it associates with either CBP or HDAC-1, ensuring that only p65 entering the nucleus from cytoplasmic NF-kappa B:Ikappa B complexes can activate transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses.

            NF-kappa B, a heterodimeric transcription factor composed of p50 and p65 subunits, can be activated in many cell types and is thought to regulate a wide variety of genes involved in immune function and development. Mice lacking the p50 subunit of NF-kappa B show no developmental abnormalities, but exhibit multifocal defects in immune responses involving B lymphocytes and nonspecific responses to infection. B cells do not proliferate in response to bacterial lipopolysaccharide and are defective in basal and specific antibody production. Mice lacking p50 are unable effectively to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae, but are more resistant to infection with murine encephalomyocarditis virus. These data support the role of NF-kappa B as a vital transcription factor for both specific and nonspecific immune responses, but do not indicate a developmental role for the factor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities.

              The NF-kappaB transcription factors consist of dimeric proteins of the Rel homology family. They activate many promoters containing highly divergent kappaB-site sequences. We have generated cell lines lacking individual and multiple NF-kappaB proteins and used them to establish interactions between components of the NF-kappaB-IkappaB signaling system. Functional compensation within the family of dimers was evident in knockout cell lines. Analysis of transiently transfected genes gave an impression of promiscuity that was not borne out by analysis of endogenous genes. Using TNFalpha as an inducer, a panel of endogenous genes showed a wide range of subunit specificities as well as highly variable kinetics of induction. Comparing the function and subunit specificity of genes with the sequence of the kappaB DNA-binding site we found little correlation, indicating that NF-kappaB family member specificity for endogenous promoters is not solely encoded by the kappaB site sequence itself.
                Bookmark

                Author and article information

                Journal
                BMC Immunol
                BMC Immunology
                BioMed Central (London )
                1471-2172
                2004
                9 June 2004
                : 5
                : 10
                Affiliations
                [1 ]Physiology Program, Harvard School of Public Health, Boston, MA, 02115 USA
                Article
                1471-2172-5-10
                10.1186/1471-2172-5-10
                449706
                15189567
                fd1d8e19-ef2c-4986-ba26-40a3a44e328e
                Copyright © 2004 Mizgerd et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 9 February 2004
                : 9 June 2004
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article