21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biodegradable Materials and Green Processing for Green Electronics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references315

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.

          Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

            Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Fundamentals of zinc oxide as a semiconductor

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                June 25 2020
                : 2001591
                Affiliations
                [1 ]Guangdong University Key Laboratory for Advanced Quantum Dot DisplaysShenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic EngineeringSouthern University of Science and Technology Shenzhen 518055 China
                [2 ]School of Chemistry and PhysicsQueensland University of Technology Brisbane QLD 4000 Australia
                [3 ]Department of Electrical and Electronic EngineeringThe University of Hong Kong Pokfulam Road Hong Kong 999077 China
                [4 ]School of Molecular SciencesThe University of Western Australia Perth WA 6009 Australia
                [5 ]Centre for Materials ScienceQueensland University of Technology Brisbane QLD 4000 Australia
                Article
                10.1002/adma.202001591
                fd2a84be-9b12-428e-a146-b98eb017b82c
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article