+1 Recommend
2 collections

      To submit to the journal, please click here

      • Record: found
      • Abstract: found
      • Article: found

      Chemotaxis in Campylobacter Jejuni


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Chemotaxis is the common way of flagellated bacteria to direct their locomotion to sites of most favourable living conditions, that are sites with the highest concentrations of energy sources and the lowest amounts of bacteriotoxic substances. The general prerequisites for chemotaxis are chemoreceptors, a chemosensory signal-transduction system and the flagellar apparatus.

          Epsilonproteobacteria like Campylobacter sp. show specific variations of the common chemotaxis components. CheV, a CheWlike linking-protein with an additional response regulator (RR) domain, was identified as commonly used coupling scaffold protein of Campylobacter jejuni. It attaches the histidine autokinase (CheAY), which also has an additional RR-domain, to the chemoreceptors signalling domains. Theses additional RR-domains seem to play an important role in the regulation of the CheAY-phosphorylation state and thereby in sensory adaptation.

          The Campylobacter-chemoreceptors are arranged into the three groups A, B, and C. Group A contains membrane-anchored receptors sensing periplasmic signals, group B consists only of one receptor with two cytoplasmic ligand-proteins representing a bipartite energy taxis system that senses pyruvate and fumarate, and group C receptors are cytoplasmic signalling domains with mostly unknown cytoplasmic ligand-binding proteins as sensory constituents. Recent findings demonstrating different alleles of the TLP7 chemoreceptor, specific for formic acid, led to an amendment of this grouping.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences.

          Campylobacter jejuni, from the delta-epsilon group of proteobacteria, is a microaerophilic, Gram-negative, flagellate, spiral bacterium-properties it shares with the related gastric pathogen Helicobacter pylori. It is the leading cause of bacterial food-borne diarrhoeal disease throughout the world. In addition, infection with C. jejuni is the most frequent antecedent to a form of neuromuscular paralysis known as Guillain-Barré syndrome. Here we report the genome sequence of C. jejuni NCTC11168. C. jejuni has a circular chromosome of 1,641,481 base pairs (30.6% G+C) which is predicted to encode 1,654 proteins and 54 stable RNA species. The genome is unusual in that there are virtually no insertion sequences or phage-associated sequences and very few repeat sequences. One of the most striking findings in the genome was the presence of hypervariable sequences. These short homopolymeric runs of nucleotides were commonly found in genes encoding the biosynthesis or modification of surface structures, or in closely linked genes of unknown function. The apparently high rate of variation of these homopolymeric tracts may be important in the survival strategy of C. jejuni.
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking

              • Record: found
              • Abstract: found
              • Article: not found

              Making sense of it all: bacterial chemotaxis.

              Bacteria must be able to respond to a changing environment, and one way to respond is to move. The transduction of sensory signals alters the concentration of small phosphorylated response regulators that bind to the rotary flagellar motor and cause switching. This simple pathway has provided a paradigm for sensory systems in general. However, the increasing number of sequenced bacterial genomes shows that although the central sensory mechanism seems to be common to all bacteria, there is added complexity in a wide range of species.

                Author and article information

                European Journal of Microbiology and Immunology
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                1 March 2012
                : 2
                : 1
                : 24-31
                [ 1 ] Abteilung für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
                Author notes
                [* ] +49-551-395857, +49-551-395861, azautne@ 123456gwdg.de
                : 20 December 2011
                : 24 December 2011

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                review, Epsilonproteobacteria ,receptors,chemotaxis,Tlp groups, Campylobacter jejuni ,signal transduction


                Comment on this article