23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding

      review-article
      Domestic Animal Endocrinology
      Elsevier
      Paracrinicity, GnRH, Gonadotropes, Lactotropes, Folliculostellate cells, Photoperiod

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have shown that, in conjunction with dynamic changes in the secretion of GnRH from the hypothalamus, paracrine interactions within the pituitary gland play an important role in the regulation of fertility during the annual reproductive cycle. Morphological studies have provided evidence for close associations between gonadotropes and lactotropes and gap junction coupling between these cells in a variety of species. The physiological significance of this cellular interaction was supported by subsequent studies revealing the expression of prolactin receptors in both the pars distalis and pars tuberalis regions of the pituitary. This cellular interaction is critical for adequate gonadotropin output because, in the presence of dopamine, prolactin can negatively regulate the LH response to GnRH. Receptor signaling studies showed that signal convergence at the level of protein kinase C and phospholipase C within the gonadotrope underlies the resulting inhibition of LH secretion. Although this is a conserved mechanism present in all species studied so far, in seasonal breeders such as the sheep and the horse, this mechanism is regulated by photoperiod, as it is only apparent during the long days of spring and summer. At this time of year, the nonbreeding season of the sheep coincides with the breeding season of the horse, indicating that this inhibitory system plays different roles in short- and long-day breeders. Although in the sheep, it contributes to the complete suppression of the reproductive axis, in the horse, it is likely to participate in the fine-tuning of gonadotropin output by preventing gonadotrope desensitization. The photoperiodic regulation of this inhibitory mechanism appears to rely on alterations in the folliculostellate cell population. Indeed, electron microscopic studies have recently shown increased folliculostellate cell area together with upregulation of their adherens junctions during the spring and summer. The association between gonadotropes and lactotropes could also underlie an interaction between the gonadotropic and prolactin axes in the opposite direction. In support of this alternative, a series of studies have demonstrated that GnRH stimulates prolactin secretion in sheep through a mechanism that does not involve the mediatory actions of LH or FSH and that this stimulatory effect of GnRH on the prolactin axis is seasonally regulated. Collectively, these findings highlight the importance of intercellular communications within the pituitary in the control of gonadotropin and prolactin secretion during the annual reproductive cycle in seasonal breeders.

          Highlights

          • Paracrine interactions in the pituitary play a key role in the control of fertility.

          • Gonadotroph-lactotroph crosstalk is bidirectional and seasonally regulated.

          • Prolactin and dopamine inhibition of gonadotrophins is blocked by short days.

          • Signal convergence at the level of protein kinase C and phospholipase C mediates prolactin-dopamine inhibition.

          • Seasonal alterations in folliculostellate cells appear to modulate cellular crosstalk.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice.

          PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paracrinicity: The Story of 30 Years of Cellular Pituitary Crosstalk

            C Denef (2008)
            Living organisms represent, in essence, dynamic interactions of high complexity between membrane-separated compartments that cannot exist on their own, but reach behaviour in co-ordination. In multicellular organisms, there must be communication and co-ordination between individual cells and cell groups to achieve appropriate behaviour of the system. Depending on the mode of signal transportation and the target, intercellular communication is neuronal, hormonal, paracrine or juxtacrine. Cell signalling can also be self-targeting or autocrine. Although the notion of paracrine and autocrine signalling was already suggested more than 100 years ago, it is only during the last 30 years that these mechanisms have been characterised. In the anterior pituitary, paracrine communication and autocrine loops that operate during fetal and postnatal development in mammals and lower vertebrates have been shown in all hormonal cell types and in folliculo-stellate cells. More than 100 compounds have been identified that have, or may have, paracrine or autocrine actions. They include the neurotransmitters acetylcholine and γ-aminobutyric acid, peptides such as vasoactive intestinal peptide, galanin, endothelins, calcitonin, neuromedin B and melanocortins, growth factors of the epidermal growth factor, fibroblast growth factor, nerve growth factor and transforming growth factor-β families, cytokines, tissue factors such as annexin-1 and follistatin, hormones, nitric oxide, purines, retinoids and fatty acid derivatives. In addition, connective tissue cells, endothelial cells and vascular pericytes may influence paracrinicity by delivering growth factors, cytokines, heparan sulphate proteoglycans and proteases. Basement membranes may influence paracrine signalling through the binding of signalling molecules to heparan sulphate proteoglycans. Paracrine/autocrine actions are highly context-dependent. They are turned on/off when hormonal outputs need to be adapted to changing demands of the organism, such as during reproduction, stress, inflammation, starvation and circadian rhythms. Specificity and selectivity in autocrine/paracrine interactions may rely on microanatomical specialisations, functional compartmentalisation in receptor–ligand distribution and the non-equilibrium dynamics of the receptor–ligand interactions in the loops.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Folliculostellate cell network: a route for long-distance communication in the anterior pituitary.

              All higher life forms critically depend on hormones being rhythmically released by the anterior pituitary. The proper functioning of this master gland is dynamically controlled by a complex set of regulatory mechanisms that ultimately determine the fine tuning of the excitable endocrine cells, all of them heterogeneously distributed throughout the gland. Here, we provide evidence for an intrapituitary communication system by which information is transferred via the network of nonendocrine folliculostellate (FS) cells. Local electrical stimulation of FS cells in acute pituitary slices triggered cytosolic calcium waves, which propagated to other FS cells by signaling through gap junctions. Calcium wave initiation was because of the membrane excitability of FS cells, hitherto classified as silent cells. FS cell coupling could relay information between opposite regions of the gland. Because FS cells respond to central and peripheral stimuli and dialogue with endocrine cells, the form of large-scale intrapituitary communication described here may provide an efficient mechanism that orchestrates anterior pituitary functioning in response to physiological needs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Domest Anim Endocrinol
                Domest. Anim. Endocrinol
                Domestic Animal Endocrinology
                Elsevier
                0739-7240
                1879-0054
                1 July 2016
                July 2016
                : 56
                : Suppl
                : S191-S203
                Affiliations
                [1]Centre for Comparative and Clinical Anatomy, Faculty of Health Sciences, University of Bristol, Bristol, UK
                Author notes
                []Corresponding author. Tel.: 44 117 928 8332. d.tortonese@ 123456bristol.ac.uk
                Article
                S0739-7240(16)00005-9
                10.1016/j.domaniend.2016.01.002
                5380791
                27345316
                fd3158c2-103d-4cfb-bfdd-c17079b41b03
                © 2017 The Author

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 7 October 2015
                : 12 January 2016
                : 15 January 2016
                Categories
                Article

                Animal science & Zoology
                paracrinicity,gnrh,gonadotropes,lactotropes,folliculostellate cells,photoperiod

                Comments

                Comment on this article