59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          To measure the choroidal thickness (CT) after dynamic exercise by using enhanced depth imaging optical coherence tomography (EDI-OCT).

          Materials and Methods:

          A total of 19 healthy participants performed 10 min of low-impact, moderate-intensity exercise (i.e., riding a bicycle ergometer) and were examined with EDI-OCT. Each participant was scanned before exercise and afterward at 5 min and 15 min. CT measurement was taken at the fovea and 1000 μ away from the fovea in the nasal, temporal, superior, and inferior regions. Retinal thickness, intraocular pressure, ocular perfusion pressure (OPP), heart rate, and mean blood pressure (mBP) were also measured.

          Results:

          A significant increase occurred in OPP and mBP at 5 min and 15 min following exercise ( P ˂ 0.05). The mean subfoveal CT at baseline was 344.00 ± 64.71 μm compared to 370.63 ± 66.87 μm at 5 min and 345.31 ± 63.58 μm at 15 min after exercise. CT measurements at all locations significantly increased at 5 min following exercise compared to the baseline ( P ˂ 0.001), while measurements at 15 min following exercise did not significant differ compared to the baseline ( P ˃ 0.05). There was no significant difference in retinal thickness at any location before and at 5 min and 15 min following exercise ( P ˃ 0.05).

          Conclusion:

          Findings revealed that dynamic exercise causes a significant increase in CT for at least 5 min following exercise.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Age-predicted maximal heart rate revisited.

          We sought to determine a generalized equation for predicting maximal heart rate (HRmax) in healthy adults. The age-predicted HRmax equation (i.e., 220 - age) is commonly used as a basis for prescribing exercise programs, as a criterion for achieving maximal exertion and as a clinical guide during diagnostic exercise testing. Despite its importance and widespread use, the validity of the HRmax equation has never been established in a sample that included a sufficient number of older adults. First, a meta-analytic approach was used to collect group mean HRmax values from 351 studies involving 492 groups and 18,712 subjects. Subsequently, the new equation was cross-validated in a well-controlled, laboratory-based study in which HRmax was measured in 514 healthy subjects. In the meta-analysis, HRmax was strongly related to age (r = -0.90), using the equation of 208 - 0.7 x age. The regression equation obtained in the laboratory-based study (209 - 0.7 x age) was virtually identical to that obtained from the meta-analysis. The regression line was not different between men and women, nor was it influenced by wide variations in habitual physical activity levels. 1) A regression equation to predict HRmax is 208 - 0.7 x age in healthy adults. 2) HRmax is predicted, to a large extent, by age alone and is independent of gender and habitual physical activity status. Our findings suggest that the currently used equation underestimates HRmax in older adults. This would have the effect of underestimating the true level of physical stress imposed during exercise testing and the appropriate intensity of prescribed exercise programs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography.

            To describe the pattern and magnitude of diurnal variation of choroidal thickness (CT), its relation to systemic and ocular factors, and to determine the intervisit reproducibility of diurnal patterns. A prospective study was conducted on 12 healthy volunteers who each underwent sequential ocular imaging on two separate days at five fixed, 2-hour time intervals. Spectral domain optical coherence tomography (OCT) with enhanced depth imaging and image tracking was performed using a standardized protocol. Choroidal and retinal thicknesses were independently assessed by two masked graders. CT diurnal variation was assessed using repeated-measures ANOVA. A significant diurnal variation in CT was observed, with mean maximum CT of 372.2 μm, minimum of 340.6 μm (P < 0.001), and mean diurnal amplitude of 33.7 μm. Retinal thickness (mean, 235.0 μm) did not exhibit significant diurnal variation (P = 0.621). The amplitude of CT variation was significantly greater for subjects with thicker morning baseline CT compared with those with thin choroids (43.1 vs. 10.5 μm, P < 0.001). There were significant correlations between amplitude of CT and age (P = 0.032), axial length (P < 0.001), and spherical equivalent (P < 0.001). The change in CT also correlated with change in systolic blood pressure (P = 0.031). Comparing CT on two different days, a similar diurnal pattern was observed, with no significant difference between corresponding measurements at the same time points (P = 0.180). There is significant diurnal variation of CT, with good intervisit reproducibility of diurnal patterns on two different days. The amplitude of variation varies with morning baseline CT, and is correlated with age, axial length, refractive error, and change in systolic blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes.

              To measure macular choroidal thickness (CT) in highly myopic eyes using enhanced depth imaging optical coherence tomography (OCT). Retrospective, observational case series. Enhanced depth imaging OCT images were obtained in highly myopic eyes (> or =6 diopters [D]). Images of CT were obtained by positioning a spectral-domain OCT device close enough to the eye to acquire an inverted image. CT was measured from the outer border of the retinal pigment epithelium to the inner scleral border at 1000-mum intervals of a horizontal section from 3 mm temporal to the fovea to 3 mm nasal to the fovea. Statistical analysis was performed to evaluate CT at each location and to correlate CT with age and refractive error. The mean age of the 31 patients (55 eyes) was 59.7 years (+/- 17.6 years; range, 24 to 90 years), and the mean refractive error was -11.9 D (+/- 3.7 D). The mean subfoveal CT was 93.2 microm (+/- 62.5 microm) and was correlated negatively with age (P = .006), refractive error (P < .001), and history of choroidal neovascularization (P = .013). Regression analysis suggested that subfoveal CT decreased by 12.7 mum for each decade of life and by 8.7 microm for each D of myopia. The choroid in highly myopic eyes is very thin and undergoes further thinning with increasing age and degree of myopia. Abnormalities of the choroid may play a role in the pathogenesis of myopic degeneration.
                Bookmark

                Author and article information

                Journal
                Indian J Ophthalmol
                Indian J Ophthalmol
                IJO
                Indian Journal of Ophthalmology
                Medknow Publications & Media Pvt Ltd (India )
                0301-4738
                1998-3689
                May 2015
                : 63
                : 5
                : 445-450
                Affiliations
                [1]Department of Ophthalmology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
                [1 ]Department of Ophthalmology, Gaziantep University, Gaziantep, Turkey
                [2 ]Department of Ophthalmology, Pamukkale University, Denizli, Turkey
                [3 ]Department of Ophthalmology, Ataturk Training and Research Hospital, Ankara, Turkey
                Author notes
                Correspondence to: Dr. Nihat Sayin, Atakent Mahallesi, 4. Cadde, C 2-7 Blok, Kat: 3 Daire: 13, Kücükcekmece, Istanbul, Turkey. E-mail: nihatsayin@ 123456yahoo.com
                Article
                IJO-63-445
                10.4103/0301-4738.159884
                4501143
                26139808
                fd3a4555-34b5-45f0-b975-269ae5d2c14f
                Copyright: © Indian Journal of Ophthalmology

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 July 2014
                : 22 May 2015
                Categories
                Original Article

                Ophthalmology & Optometry
                choroidal thickness,dynamic exercise,exercise,optical coherence tomography

                Comments

                Comment on this article