13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Embryonic Stem Cells As an Alternate Marrow Donor Source : Engraftment without Graft-Versus-Host Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A single embryonic stem cell (ESC) line can be repetitively cryopreserved, thawed, expanded, and differentiated into various cellular components serving as a potentially renewable and well-characterized stem cell source. Therefore, we determined whether ESCs could be used to reconstitute marrow and blood in major histocompatibility complex (MHC)-mismatched mice. To induce differentiation toward hematopoietic stem cells (HSCs) in vitro, ESCs were cultured in methylcellulose with stem cell factor, interleukin (IL)-3, and IL-6. ESC-derived, cytokine-induced HSCs (c-kit +/CD45 +) were isolated by flow cytometry and injected either intra bone marrow or intravenously into lethally irradiated MHC-mismatched recipient mice. From 2 wk to 6 mo after injection, the peripheral blood demonstrated increasing ESC-derived mononuclear cells that included donor-derived T and B lymphocytes, monocytes, and granulocytes without clinical or histologic evidence of graft-versus-host disease (GVHD). Mixed lymphocyte culture assays demonstrated T cell tolerance to both recipient and donor but intact third party proliferative responses and interferon γ production. ESCs might be used as a renewable alternate marrow donor source that reconstitutes hematopoiesis with intact immune responsiveness without GVHD despite crossing MHC barriers.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells.

          Embryonic stem (ES) cells, the totipotent outgrowths of blastocysts, can be cultured and manipulated in vitro and then returned to the embryonic environment where they develop normally and can contribute to all cell lineages. Maintenance of the stem-cell phenotype in vitro requires the presence of a feeder layer of fibroblasts or of a soluble factor, differentiation inhibitory activity (DIA) produced by a number of sources; in the absence of DIA the ES cells differentiate into a wide variety of cell types. We recently noted several similarities between partially purified DIA and a haemopoietic regulator, myeloid leukaemia inhibitory factor (LIF), a molecule which induces differentiation in M1 myeloid leukaemic cells and which we have recently purified, cloned and characterized. We demonstrate here that purified, recombinant LIF can substitute for DIA in the maintenance of totipotent ES cell lines that retain the potential to form chimaeric mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of lymphohematopoietic cells from embryonic stem cells in culture.

            An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid, myeloid, and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required, and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells, this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo.

              Murine hematopoietic stem cells (HSCs) originate from mesoderm in a process that requires the transcription factor SCL/Tal1. To define steps in the commitment to blood cell fate, we compared wild-type and SCL(-/-) embryonic stem cell differentiation in vitro and identified CD41 (GpIIb) as the earliest surface marker missing from SCL(-/-) embryoid bodies (EBs). Culture of fluorescence-activated cell sorter (FACS) purified cells from EBs showed that definitive hematopoietic progenitors were highly enriched in the CD41(+) fraction, whereas endothelial cells developed from CD41(-) cells. In the mouse embryo, expression of CD41 was detected in yolk sac blood islands and in fetal liver. In yolk sac and EBs, the panhematopoietic marker CD45 appeared in a subpopulation of CD41(+) cells. However, multilineage hematopoietic colonies developed not only from CD45(+)CD41(+) cells but also from CD45(-)CD41(+) cells, suggesting that CD41 rather than CD45 marks the definitive culture colony-forming unit (CFU-C) at the embryonic stage. In contrast, fetal liver CFU-C was CD45(+), and only a subfraction expressed CD41, demonstrating down-regulation of CD41 by the fetal liver stage. In yolk sac and EBs, CD41 was coexpressed with embryonic HSC markers c-kit and CD34. Sorting for CD41 and c-kit expression resulted in enrichment of definitive hematopoietic progenitors. Furthermore, the CD41(+) c-kit(+) population was missing from runx1/AML1(-/-) EBs that lack definitive hematopoiesis. These results suggest that the expression of CD41, a candidate target gene of SCL/Tal1, and c-kit define the divergence of definitive hematopoiesis from endothelial cells during development. Although CD41 is commonly referred to as megakaryocyte-platelet integrin in adult hematopoiesis, these results implicate a wider role for CD41 during murine ontogeny.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                5 April 2004
                : 199
                : 7
                : 895-904
                Affiliations
                [1 ]Division of Immunotherapy, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
                [2 ]NewLink Genetics, Ames, IA 50011
                Author notes

                Address correspondence to Richard K. Burt, Division of Immunotherapy, Department of Medicine, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Searle, Room 3-489, Chicago, IL 60611. Phone: (312) 908-0059; Fax: (312) 908-0064; email: rburt@ 123456nwu.edu

                Article
                20031916
                10.1084/jem.20031916
                2211878
                15051761
                fd4b32fa-3b83-403f-813d-d13affb3f35a
                Copyright © 2004, The Rockefeller University Press
                History
                : 6 November 2003
                : 2 February 2004
                Categories
                Article

                Medicine
                tolerance,embryonic stem cells,hematopoiesis,mouse,in vivo
                Medicine
                tolerance, embryonic stem cells, hematopoiesis, mouse, in vivo

                Comments

                Comment on this article