25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atracurium Besylate and other neuromuscular blocking agents promote astroglial differentiation and deplete glioblastoma stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma multiforme (GBM) are the most common primary malignant brain tumor in adults, with a median survival of about one year. This poor prognosis is attributed primarily to therapeutic resistance and tumor recurrence after surgical removal, with the root cause suggested to be found in glioblastoma stem cells (GSCs). Using glial fibrillary acidic protein (GFAP) as a reporter of astrocytic differentiation, we isolated multiple clones from three independent GSC lines which express GFAP in a remarkably stable fashion. We next show that elevated expression of GFAP is associated with reduced clonogenicity in vitro and tumorigenicity in vivo. Utilizing this in vitro cell-based differentiation reporter system we screened chemical libraries and identified the non-depolarizing neuromuscular blocker (NNMB), Atracurium Besylate, as a small molecule which effectively induces astroglial but not neuronal differentiation of GSCs. Functionally, Atracurium Besylate treatment significantly inhibited the clonogenic capacity of several independent patient-derived GSC neurosphere lines, a phenomenon which was largely irreversible. A second NNMB, Vecuronium, also induced GSC astrocytic differentiation while Dimethylphenylpiperazinium (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist, significantly blocked Atracurium Besylate pro-differentiation activity. To investigate the clinical importance of nAChRs in gliomas, we examined clinical outcomes and found that glioma patients with tumors overexpressing CHRNA1 or CHRNA9 (encoding for the AChR-α1 or AChR-α9) exhibit significant shorter overall survival. Finally, we found that ex-vivo pre-treatment of GSCs, expressing CHRNA1 and CHRNA9, with Atracurium Besylate significantly increased the survival of mice xenotransplanted with these cells, therefore suggesting that tumor initiating subpopulations have been reduced.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.

            Transformed, oncogenic precursors, possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours, have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs), amongst which BMP4 elicits the strongest effect, trigger a significant reduction in the stem-like, tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly, in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation, and increased expression of markers of neural differentiation, with no effect on cell viability. The concomitant reduction in clonogenic ability, in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP-BMPR signalling system--which controls the activity of normal brain stem cells--may also act as a key inhibitory regulator of tumour-initiating, stem-like cells from GBMs and the results also identify BMP4 as a novel, non-cytotoxic therapeutic effector, which may be used to prevent growth and recurrence of GBMs in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term survival with glioblastoma multiforme.

              The median survival of glioblastoma patients is approximately 12 months. However, 3-5% of the patients survives for more than 3 years and are referred to as long-term survivors. The clinical and molecular factors that contribute to long-term survival are still unknown. To identify specific parameters that might be associated with this phenomenon, we performed a detailed clinical and molecular analysis of 55 primary glioblastoma long-term survivors recruited at the six clinical centres of the German Glioma Network and one associated centre. An evaluation form was developed and used to document demographic, clinical and treatment-associated parameters. In addition, environmental risk factors, associated diseases and occupational risks were assessed. These patients were characterized by young age at diagnosis and a good initial Karnofsky performance score (KPS). None of the evaluated socioeconomic, environmental and occupational factors were associated with long-term survival. Molecular analyses revealed MGMT hypermethylation in 28 of 36 tumours (74%) investigated. TP53 mutations were found in 9 of 31 tumours (29%) and EGFR amplification in 10 of 38 tumours (26%). Only 2 of 32 tumours (6%) carried combined 1p and 19q deletions. Comparison of these data with results from an independent series of 141 consecutive unselected glioblastoma patients registered in the German Glioma Network revealed significantly more frequent MGMT hypermethylation in the long-term survivor group. Taken together, our findings underline the association of glioblastoma long-term survival with prognostically favourable clinical factors, in particular young age and good initial performance score, as well as MGMT promoter hypermethylation.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                5 January 2016
                13 November 2015
                : 7
                : 1
                : 459-472
                Affiliations
                1 Department of Neurological Surgery, Case Western Reserve University School of Medicine and Case Comprehensive Cancer Center, Cleveland, OH, USA
                2 Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
                3 Department of Neurological Surgery, University Hospital-Case Medical Center, Case Comprehensive Cancer Center, and Case Western Reserve University, Cleveland, OH, USA
                Author notes
                Correspondence to: Eli E. Bar, eli.bar@ 123456case.edu
                Article
                10.18632/oncotarget.6314
                4808011
                26575950
                fd4f9921-8583-4ccb-8a4b-c61abf9f6efd
                Copyright: © 2016 Spina et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 October 2015
                : 29 October 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                atracurium besylate,stem cells,glioma,astrocytic differentiation,neurotransmitter signaling

                Comments

                Comment on this article