114
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements

      , ,
      Nature Biotechnology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CRISPR-Cas9 is poised to become the gene editing tool of choice in clinical contexts. Thus far, exploration of Cas9-induced genetic alterations has been limited to the immediate vicinity of the target site and distal off-target sequences, leading to the conclusion that CRISPR-Cas9 was reasonably specific. Here we report significant on-target mutagenesis, such as large deletions and more complex genomic rearrangements at the targeted sites in mouse embryonic stem cells, mouse hematopoietic progenitors and a human differentiated cell line. Using long-read sequencing and long-range PCR genotyping, we show that DNA breaks introduced by single-guide RNA/Cas9 frequently resolved into deletions extending over many kilobases. Furthermore, lesions distal to the cut site and crossover events were identified. The observed genomic damage in mitotically active cells caused by CRISPR-Cas9 editing may have pathogenic consequences.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.

          Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.

            CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hyperactive piggyBac transposase for mammalian applications.

              DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature
                1087-0156
                1546-1696
                July 16 2018
                July 16 2018
                July 16 2018
                July 16 2018
                Article
                10.1038/nbt.4192
                6390938
                30010673
                fd5b1596-9e79-4aa9-a790-5e1e103e043f
                © 2018
                History

                Comments

                Comment on this article