12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch inChlamydomonas reinhardtiiIncreases Survival under Dark Anoxia

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The endosymbiotic origin, diversification and fate of plastids.

          Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids

            Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus

              An alignment of upstream regions of anaerobically induced genes in Staphylococcus aureus revealed the presence of an inverted repeat, corresponding to Rex binding sites in Streptomyces coelicolor. Gel shift experiments of selected upstream regions demonstrated that the redox-sensing regulator Rex of S. aureus binds to this inverted repeat. The binding sequence – TTGTGAAW4TTCACAA – is highly conserved in S. aureus. Rex binding to this sequence leads to the repression of genes located downstream. The binding activity of Rex is enhanced by NAD+ while NADH, which competes with NAD+ for Rex binding, decreases the activity of Rex. The impact of Rex on global protein synthesis and on the activity of fermentation pathways under aerobic and anaerobic conditions was analysed by using a rex-deficient strain. A direct regulatory effect of Rex on the expression of pathways that lead to anaerobic NAD+ regeneration, such as lactate, formate and ethanol formation, nitrate respiration, and ATP synthesis, is verified. Rex can be considered a central regulator of anaerobic metabolism in S. aureus. Since the activity of lactate dehydrogenase enables S. aureus to resist NO stress and thus the innate immune response, our data suggest that deactivation of Rex is a prerequisite for this phenomenon.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                February 10 2017
                February 10 2017
                February 10 2017
                December 22 2016
                : 292
                : 6
                : 2395-2410
                Article
                10.1074/jbc.M116.766048
                fd5bb2fd-6409-49ca-bd62-f98b477099ad
                © 2016
                History

                Comments

                Comment on this article