53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The MDCK variety pack: choosing the right strain

      research-article
      1 , 1 , , 1 ,
      BMC Cell Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The MDCK cell line provides a tractable model for studying protein trafficking, polarity and junctions (tight, adherens, desmosome and gap) in epithelial cells. However, there are many different strains of MDCK cells available, including the parental line, MDCK I, MDCK II, MDCK.1, MDCK.2, superdome and supertube, making it difficult for new researchers to decide which strain to use. Furthermore, there is often inadequate reporting of strain types and where cells were obtained from in the literature. This review aims to provide new researchers with a guide to the different MDCK strains and a directory of where they can be obtained. We also hope to encourage experienced researchers to report the stain and origin of their MDCK cells.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Tight junctions and cell polarity.

          The tight junction is an intracellular junctional structure that mediates adhesion between epithelial cells and is required for epithelial cell function. Tight junctions control paracellular permeability across epithelial cell sheets and also serve as a barrier to intramembrane diffusion of components between a cell's apical and basolateral membrane domains. Recent genetic and biochemical studies in invertebrates and vertebrates indicate that tight junction proteins play an important role in the establishment and maintenance of apico-basal polarity. Proteins involved in epithelial cell polarization form evolutionarily conserved multiprotein complexes at the tight junction, and these protein complexes regulate the architecture of epithelia throughout the polarization process. Accumulating information regarding the regulation of these polarity proteins will lead to a better understanding of the molecular mechanisms whereby cell polarity is established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conversion of Zonulae Occludentes from Tight to Leaky Strand Type by Introducing Claudin-2 into Madin-Darby Canine Kidney I Cells

            There are two strains of MDCK cells, MDCK I and II. MDCK I cells show much higher transepithelial electric resistance (TER) than MDCK II cells, although they bear similar numbers of tight junction (TJ) strands. We examined the expression pattern of claudins, the major components of TJ strands, in these cells: claudin-1 and -4 were expressed both in MDCK I and II cells, whereas the expression of claudin-2 was restricted to MDCK II cells. The dog claudin-2 cDNA was then introduced into MDCK I cells to mimic the claudin expression pattern of MDCK II cells. Interestingly, the TER values of MDCK I clones stably expressing claudin-2 (dCL2-MDCK I) fell to the levels of MDCK II cells (>20-fold decrease). In contrast, when dog claudin-3 was introduced into MDCK I cells, no change was detected in their TER. Similar results were obtained in mouse epithelial cells, Eph4. Morphometric analyses identified no significant differences in the density of TJs or in the number of TJ strands between dCL2-MDCK I and control MDCK I cells. These findings indicated that the addition of claudin-2 markedly decreased the tightness of individual claudin-1/4–based TJ strands, leading to the speculation that the combination and mixing ratios of claudin species determine the barrier properties of individual TJ strands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Opinion: Building epithelial architecture: insights from three-dimensional culture models.

              How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central
                1471-2121
                2011
                7 October 2011
                : 12
                : 43
                Affiliations
                [1 ]Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, UK
                Article
                1471-2121-12-43
                10.1186/1471-2121-12-43
                3209442
                21982418
                fd63f850-305a-490e-aa9c-076676415782
                Copyright ©2011 Dukes et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 August 2011
                : 7 October 2011
                Categories
                Commentary

                Cell biology
                Cell biology

                Comments

                Comment on this article