68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating biocomplexity through the agent-based paradigm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines—or agents—to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: not found
          • Article: not found

          Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.

              The potential to generate virtually any differentiated cell type from embryonic stem cells (ESCs) offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Embryology has offered important insights into key pathways regulating ESC differentiation, resulting in advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, and ectoderm and many of their downstream derivatives. This has led to the identification of new multipotential progenitors for the hematopoietic, neural, and cardiovascular lineages and to the development of protocols for the efficient generation of a broad spectrum of cell types including hematopoietic cells, cardiomyocytes, oligodendrocytes, dopamine neurons, and immature pancreatic beta cells. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of human disease.
                Bookmark

                Author and article information

                Journal
                Brief Bioinform
                Brief. Bioinformatics
                bib
                bib
                Briefings in Bioinformatics
                Oxford University Press
                1467-5463
                1477-4054
                January 2015
                12 November 2013
                12 November 2013
                : 16
                : 1
                : 137-152
                Author notes
                Corresponding author. Yiannis Ventikos, Department of Mechanical Engineering, University College London, London, UK. Tel.: +44(0)207-679-3908; Fax: +44(0)207-388-0180; E-mail: y.ventikos@ 123456ucl.ac.uk
                Article
                bbt077
                10.1093/bib/bbt077
                4293376
                24227161
                fd7d7fe3-76a2-4e67-a9a6-f3bf875a0f09
                © The Author 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 July 2013
                : 4 October 2013
                Page count
                Pages: 16
                Categories
                Papers

                Bioinformatics & Computational biology
                agent-based model,biological complexity,computational modeling,cell,emergence,hybrid models

                Comments

                Comment on this article