7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model.

      Journal of Neurogenetics
      Animals, Animals, Genetically Modified, Body Patterning, genetics, Cell Death, Cell Nucleus, metabolism, pathology, Dendrites, Disease Models, Animal, Drosophila, Humans, Huntington Disease, physiopathology, Intranuclear Inclusion Bodies, Larva, cytology, growth & development, Locomotion, Nerve Degeneration, Nerve Tissue Proteins, Neurons, physiology, Nuclear Proteins, Peptides

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington's disease is an autosomal dominant neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in the huntingtin protein, resulting in intracellular aggregate formation and neurodegeneration. How neuronal cells are affected by such a polyglutamine tract expansion remains obscure. To dissect the ways in which polyglutamine expansion can cause neural dysfunction, the authors generated Drosophila transgenic strains expressing either a nuclear targeted or cytoplasmic form of pathogenic (NHtt-152Q(NLS), NHtt-152Q), or nonpathogenic (NHtt-18Q(NLS), NHtt-18Q) N-terminal human huntingtin. These proteins were expressed in the dendritic arborization neurons of the larval peripheral nervous system and their effects on neuronal survival, morphology, and larval locomotion were examined. The authors found that NHtt-152Q(NLS) larvae had altered dendrite morphology and larval locomotion, whereas NHtt-152Q, NHtt-18Q(NLS), and NHtt-18Q larvae did not. Furthermore, the authors examined the physiological defect underlying this disrupted larval locomotion in detail by recording spontaneous ongoing segmental nerve activity. NHtt-152Q(NLS) larvae displayed uncoordinated activity between anterior and posterior segments. Moreover, anterior segments had shorter bursts and longer interburst intervals in NHtt-152Q(NLS) larvae than in NHtt-18Q(NLS) larvae, whereas posterior segments had longer bursts and shorter interburst intervals. These results suggest that the pathogenic protein disrupts neuron function without inducing cell death, and describe how this dysfunction leads to a locomotor defect. These results also suggest that sensory inputs are necessary for the coordination of anterior and posterior body parts during locomotion. From these analyses the authors show that examination of motor behaviors in the Drosophila larvae is a powerful new model to dissect non-cell-lethal mechanisms of mutant Htt toxicity.

          Related collections

          Author and article information

          Comments

          Comment on this article